File size: 10,284 Bytes
25e496d
 
 
 
 
 
 
 
 
 
71aaedb
25e496d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71aaedb
 
 
 
 
 
 
 
 
 
 
 
 
25e496d
 
 
71aaedb
25e496d
 
 
 
 
 
 
71aaedb
25e496d
 
 
 
 
71aaedb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25e496d
 
 
 
 
 
 
 
71aaedb
 
 
 
 
 
25e496d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71aaedb
25e496d
 
 
 
 
 
71aaedb
25e496d
 
 
 
 
 
 
 
71aaedb
25e496d
 
 
 
 
 
 
 
 
 
71aaedb
 
 
 
 
 
 
 
 
 
 
25e496d
 
71aaedb
 
 
 
 
 
25e496d
 
 
71aaedb
25e496d
 
 
 
 
71aaedb
 
 
 
 
 
 
 
 
 
25e496d
 
71aaedb
 
25e496d
71aaedb
 
 
 
 
25e496d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71aaedb
25e496d
 
 
 
 
 
 
 
 
 
 
 
 
71aaedb
25e496d
 
 
 
 
 
71aaedb
 
 
 
 
 
 
 
 
 
 
25e496d
 
 
 
71aaedb
25e496d
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import os
import shutil
import re
from PyPDF2 import PdfReader, PdfWriter
import pandas as pd
import camelot
import openpyxl
from openpyxl.utils.dataframe import dataframe_to_rows
from openpyxl.styles import numbers
from openpyxl.worksheet.table import Table, TableStyleInfo
import tabula

def extract_pages(pdf_path, start_page, end_page, output_path):
    reader = PdfReader(pdf_path)
    writer = PdfWriter()
    for page_num in range(start_page, end_page + 1):
        if page_num <= len(reader.pages):
            writer.add_page(reader.pages[page_num - 1])

    with open(output_path, 'wb') as output_pdf_file:
        writer.write(output_pdf_file)


def reduce_pdf(pdf_folder,reduced_pdf_folder):
    if os.path.exists(reduced_pdf_folder):
        shutil.rmtree(reduced_pdf_folder)
    os.makedirs(reduced_pdf_folder)

    for filename in os.listdir(pdf_folder):
        if filename.endswith('.pdf'):
            match = re.search(r'_CbCR_(\d+)(?:-(\d+))?', filename)
            if match:
                start_page = int(match.group(1))
                end_page = int(match.group(2)) if match.group(2) else start_page
                base_name = re.sub(r'_CbCR_\d+(?:-\d+)?\.pdf$', '_CbCR.pdf', filename)
                pdf_path = os.path.join(pdf_folder, filename)
                output_path = os.path.join(reduced_pdf_folder, base_name)

                extract_pages(pdf_path, start_page, end_page, output_path)
                print(f'Processed {filename} -> {base_name}')








def extract_tables_camelot_or_tabula(pdf_path):
    try:
        tables = camelot.read_pdf(pdf_path, pages='all', flavor='stream')
        return [table.df for table in tables]
    except Exception as e:
        print(f"Camelot failed with error: {e}")
        print("Trying with Tabula...")
        dfs = tabula.read_pdf(pdf_path, pages='all', multiple_tables=True)
        return dfs


def get_numeric_count(row):
    # Get the number of numerical values in a row
    return sum(1 for x in row if (pd.notna(pd.to_numeric(str(x).replace(",", "").strip('()'), errors='coerce')) or x in ['-','–']))


def convert_to_numeric(value):
    if isinstance(value, str) and value.startswith('(') and value.endswith(')'):
        value = '-' + value[1:-1]

    if all(char.isdigit() or char in '-,.' for char in str(value)):
        cleaned_value = pd.to_numeric(str(value).replace(',', ''), errors='coerce')
        return cleaned_value
    return value

def get_headers(dataframes):
    # Get the dataframe columns name
    # if len(dataframes) >= 2:
    #     df_for_columns_names = dataframes[1]
    # else:
    #     df_for_columns_names = dataframes[0]
    first_numeric_idx = None

    order = list(range(1, len(dataframes))) + [0]

    for k in order:
        if first_numeric_idx is None:
            df_for_columns_names = dataframes[k]
            df_for_columns_names = df_for_columns_names.astype(str).where(pd.notna(df_for_columns_names), "")
            for i, row in df_for_columns_names.iterrows():
                numeric_count = get_numeric_count(row)
                if numeric_count >= 2:
                    first_numeric_idx = i
                    break
        if first_numeric_idx is not None:
            break 


    new_header = [" ".join(filter(None, df_for_columns_names.iloc[:first_numeric_idx, col].values)) for col in range(df_for_columns_names.shape[1])]

    return new_header

def clean_dataframe(df,header):
    # Rule : if a row is not numerical, merge it with the next numerical one
    if len(header) < len(df.columns):
        df.columns = header + [f"Unnamed_{i}" for i in range(len(header), len(df.columns))]
    elif len(header) > len(df.columns):
        df.columns = header[:len(df.columns)]
    else:
        df.columns = header
    first_numeric_idx = None
    for i, row in df.iterrows():
        numeric_count = get_numeric_count(row)
        if numeric_count >= 2:
            first_numeric_idx = i
            break

    df = df.iloc[first_numeric_idx:]
    df = df.reset_index(drop=True)

    merged_rows = []
    buffer = None 

    for i in range(len(df)):
        row = df.iloc[i]
        numeric_count = get_numeric_count(row)
        
        if numeric_count < 2:
            if buffer is None:
                buffer = list(df.iloc[i].copy())
            else:
                buffer = [
                    " ".join(filter(lambda x: x not in [None, "None", ""], [str(buffer[j]), str(df.iloc[i, j])]))
                    for j in range(df.shape[1])
                ]
            merged_rows.append(i)
        else:
            if buffer is not None:
                df.iloc[i] = [
                    " ".join(filter(lambda x: x not in [None, "None", ""], [str(buffer[j]), str(df.iloc[i, j])]))
                    for j in range(df.shape[1])
                ]
                buffer = None

    clean_df = df.drop(merged_rows).reset_index(drop=True)
    return clean_df


def clean_and_concatenate_tables(dataframes):
    for i in range(len(dataframes)):
        df = dataframes[i]
        row_counts = df.apply(lambda row: row.notna().sum() - (row.astype(str) == "").sum(), axis=1)
        col_counts = df.apply(lambda col: col.notna().sum() - (col.astype(str) == "").sum(), axis=0)
        dataframes[i] = df.loc[row_counts >= 1, col_counts >= 3].reset_index(drop = True)

    new_header = get_headers(dataframes) 
    cleaned_dfs = []

    for df in dataframes:
        if len(df.columns) >= 3 : 
            cleaned_dfs.append(clean_dataframe(df,new_header))
    
    cleaned_dfs = [df.reset_index(drop=True) for df in cleaned_dfs if isinstance(df, pd.DataFrame) and not df.empty]

    if not cleaned_dfs:
        raise ValueError("After cleaning, no valid dataframe left.")

    for _, df in enumerate(cleaned_dfs):
        if any(col == '' for col in df.columns):  # Check if there are empty column names
            df.columns = [f"col_{j}" if col == '' else col for j, col in enumerate(df.columns)]

    concatenated_df = pd.concat(cleaned_dfs, ignore_index=True)

    if concatenated_df.shape[0] <= 4 :
        raise ValueError("Dataframe too small, probable mistake")
    if concatenated_df.shape[1] <= 2 :
        raise ValueError("Less than 3 columns, probable mistake")
    print("Success of conversion : dataframe of shape ",concatenated_df.shape)
    return concatenated_df



def convert_to_excel(reduced_pdf_folder, output_folder):
    if os.path.exists(output_folder):
        shutil.rmtree(output_folder)
    os.makedirs(output_folder)
    
    failed_folder = os.path.join(output_folder, "failed_to_convert")
    if os.path.exists(failed_folder):
        shutil.rmtree(failed_folder)
    os.makedirs(failed_folder)
    
    if os.path.exists("./log_errors.txt"):
        os.remove("./log_errors.txt")

    number_of_files = 0
    number_of_fails = 0
    for filename in os.listdir(reduced_pdf_folder):
        if filename.endswith('.pdf'):
            number_of_files += 1
            print("Trying to convert :", filename, "to excel")
            pdf_path = os.path.join(reduced_pdf_folder, filename)
            try:
                dataframes = extract_tables_camelot_or_tabula(pdf_path)
                if not dataframes:
                    raise ValueError(f'No tables found in {filename}')
                concatenated_df = clean_and_concatenate_tables(dataframes)
                excel_path = os.path.join(output_folder, filename.replace('.pdf', '.xlsx'))

                for col in concatenated_df.columns:
                    if any(str(cell).strip() and not str(cell).strip().startswith('(') for cell in concatenated_df[col]):
                        concatenated_df[col] = concatenated_df[col].apply(convert_to_numeric)

                wb = openpyxl.Workbook()
                ws = wb.active

                percentage_cells = []

                # Add the DataFrame data to the worksheet
                for r_idx, r in enumerate(dataframe_to_rows(concatenated_df, index=False, header=True)):
                    ws.append(r)
                    for c_idx, value in enumerate(r):
                        if isinstance(value, str) and value.endswith('%'):
                            numeric_value = pd.to_numeric(value.strip('%'), errors='coerce') / 100
                            ws.cell(row=r_idx + 1, column=c_idx + 1, value=numeric_value)
                            percentage_cells.append((r_idx + 1, c_idx + 1)) 

                tab = Table(displayName="Table1", ref=ws.dimensions)
                style = TableStyleInfo(
                    name="TableStyleMedium9",
                    showFirstColumn=False,
                    showLastColumn=False,
                    showRowStripes=True,
                    showColumnStripes=True
                )
                tab.tableStyleInfo = style

                ws.add_table(tab)

                # Ajuster la largeur des colonnes
                for column_cells in ws.columns:
                    length = min(max(len(str(cell.value)) for cell in column_cells), 30)
                    ws.column_dimensions[column_cells[0].column_letter].width = length + 2

                for row, col in percentage_cells:
                    cell = ws.cell(row=row, column=col)
                    cell.number_format = numbers.BUILTIN_FORMATS[10]
                wb.save(excel_path)          
            except Exception as e:
                error_message = f"Error converting {filename}: {e}"
                print(error_message)
                number_of_fails += 1
                shutil.copy(pdf_path, os.path.join(failed_folder, filename))
                with open("./log_errors.txt", "a") as log_file:
                    log_file.write(error_message + "\n")
    print("Number of files considered : ",number_of_files)
    print("Number of success : ", number_of_files - number_of_fails)
    print("Number of fails : ", number_of_fails)
    shutil.make_archive(base_name="./output", format='zip', root_dir=output_folder)


def reduce_and_convert(input_folder):
    reduced_pdf_folder = "./reduced_pdf"
    output_folder = "./outputs"
    reduce_pdf(input_folder,reduced_pdf_folder)
    convert_to_excel(reduced_pdf_folder, output_folder)


if __name__ == "__main__":
    input_folder = "../example_pdf"
    reduce_and_convert(input_folder)