Spaces:
Sleeping
Sleeping
Add of tabula functionality + exception management
Browse files- reduce_and_convert_PDF.py +93 -35
- requirements.txt +2 -0
reduce_and_convert_PDF.py
CHANGED
|
@@ -8,6 +8,7 @@ import openpyxl
|
|
| 8 |
from openpyxl.utils.dataframe import dataframe_to_rows
|
| 9 |
from openpyxl.styles import numbers
|
| 10 |
from openpyxl.worksheet.table import Table, TableStyleInfo
|
|
|
|
| 11 |
|
| 12 |
def extract_pages(pdf_path, start_page, end_page, output_path):
|
| 13 |
reader = PdfReader(pdf_path)
|
|
@@ -42,14 +43,23 @@ def reduce_pdf(pdf_folder,reduced_pdf_folder):
|
|
| 42 |
|
| 43 |
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
def get_numeric_count(row):
|
| 51 |
# Get the number of numerical values in a row
|
| 52 |
-
return sum(1 for x in row if (pd.notna(pd.to_numeric(x.replace(",", "").strip('()'), errors='coerce')) or x in ['-','–']))
|
| 53 |
|
| 54 |
|
| 55 |
def convert_to_numeric(value):
|
|
@@ -57,23 +67,32 @@ def convert_to_numeric(value):
|
|
| 57 |
value = '-' + value[1:-1]
|
| 58 |
|
| 59 |
if all(char.isdigit() or char in '-,.' for char in str(value)):
|
| 60 |
-
cleaned_value = pd.to_numeric(value.replace(',', ''), errors='coerce')
|
| 61 |
return cleaned_value
|
| 62 |
return value
|
| 63 |
|
| 64 |
def get_headers(dataframes):
|
| 65 |
# Get the dataframe columns name
|
| 66 |
-
if len(dataframes) >= 2:
|
| 67 |
-
|
| 68 |
-
else:
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
-
df_for_columns_names = df_for_columns_names.astype(str).where(pd.notna(df_for_columns_names), "")
|
| 77 |
|
| 78 |
new_header = [" ".join(filter(None, df_for_columns_names.iloc[:first_numeric_idx, col].values)) for col in range(df_for_columns_names.shape[1])]
|
| 79 |
|
|
@@ -81,7 +100,12 @@ def get_headers(dataframes):
|
|
| 81 |
|
| 82 |
def clean_dataframe(df,header):
|
| 83 |
# Rule : if a row is not numerical, merge it with the next numerical one
|
| 84 |
-
df.columns
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
first_numeric_idx = None
|
| 86 |
for i, row in df.iterrows():
|
| 87 |
numeric_count = get_numeric_count(row)
|
|
@@ -104,14 +128,14 @@ def clean_dataframe(df,header):
|
|
| 104 |
buffer = list(df.iloc[i].copy())
|
| 105 |
else:
|
| 106 |
buffer = [
|
| 107 |
-
" ".join(filter(lambda x: x not in [None, "None", ""], [buffer[j], df.iloc[i, j]]))
|
| 108 |
for j in range(df.shape[1])
|
| 109 |
]
|
| 110 |
merged_rows.append(i)
|
| 111 |
else:
|
| 112 |
if buffer is not None:
|
| 113 |
df.iloc[i] = [
|
| 114 |
-
" ".join(filter(lambda x: x not in [None, "None", ""], [buffer[j], df.iloc[i, j]]))
|
| 115 |
for j in range(df.shape[1])
|
| 116 |
]
|
| 117 |
buffer = None
|
|
@@ -120,9 +144,7 @@ def clean_dataframe(df,header):
|
|
| 120 |
return clean_df
|
| 121 |
|
| 122 |
|
| 123 |
-
def clean_and_concatenate_tables(
|
| 124 |
-
dataframes = [table.df for table in tables]
|
| 125 |
-
|
| 126 |
for i in range(len(dataframes)):
|
| 127 |
df = dataframes[i]
|
| 128 |
row_counts = df.apply(lambda row: row.notna().sum() - (row.astype(str) == "").sum(), axis=1)
|
|
@@ -130,28 +152,57 @@ def clean_and_concatenate_tables(tables):
|
|
| 130 |
dataframes[i] = df.loc[row_counts >= 1, col_counts >= 3].reset_index(drop = True)
|
| 131 |
|
| 132 |
new_header = get_headers(dataframes)
|
| 133 |
-
|
| 134 |
cleaned_dfs = []
|
| 135 |
|
| 136 |
for df in dataframes:
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
concatenated_df = pd.concat(cleaned_dfs, ignore_index=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
return concatenated_df
|
| 141 |
|
| 142 |
|
|
|
|
| 143 |
def convert_to_excel(reduced_pdf_folder, output_folder):
|
| 144 |
if os.path.exists(output_folder):
|
| 145 |
shutil.rmtree(output_folder)
|
| 146 |
os.makedirs(output_folder)
|
| 147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
for filename in os.listdir(reduced_pdf_folder):
|
| 149 |
if filename.endswith('.pdf'):
|
|
|
|
|
|
|
| 150 |
pdf_path = os.path.join(reduced_pdf_folder, filename)
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
|
|
|
| 155 |
excel_path = os.path.join(output_folder, filename.replace('.pdf', '.xlsx'))
|
| 156 |
|
| 157 |
for col in concatenated_df.columns:
|
|
@@ -172,7 +223,7 @@ def convert_to_excel(reduced_pdf_folder, output_folder):
|
|
| 172 |
ws.cell(row=r_idx + 1, column=c_idx + 1, value=numeric_value)
|
| 173 |
percentage_cells.append((r_idx + 1, c_idx + 1))
|
| 174 |
|
| 175 |
-
tab = Table(displayName
|
| 176 |
style = TableStyleInfo(
|
| 177 |
name="TableStyleMedium9",
|
| 178 |
showFirstColumn=False,
|
|
@@ -186,22 +237,29 @@ def convert_to_excel(reduced_pdf_folder, output_folder):
|
|
| 186 |
|
| 187 |
# Ajuster la largeur des colonnes
|
| 188 |
for column_cells in ws.columns:
|
| 189 |
-
length = min(max(len(str(cell.value)) for cell in column_cells),30)
|
| 190 |
ws.column_dimensions[column_cells[0].column_letter].width = length + 2
|
| 191 |
|
| 192 |
for row, col in percentage_cells:
|
| 193 |
cell = ws.cell(row=row, column=col)
|
| 194 |
cell.number_format = numbers.BUILTIN_FORMATS[10]
|
| 195 |
wb.save(excel_path)
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
print(
|
| 199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
|
| 201 |
|
| 202 |
def reduce_and_convert(input_folder):
|
| 203 |
reduced_pdf_folder = "./reduced_pdf"
|
| 204 |
-
output_folder =
|
| 205 |
reduce_pdf(input_folder,reduced_pdf_folder)
|
| 206 |
convert_to_excel(reduced_pdf_folder, output_folder)
|
| 207 |
|
|
|
|
| 8 |
from openpyxl.utils.dataframe import dataframe_to_rows
|
| 9 |
from openpyxl.styles import numbers
|
| 10 |
from openpyxl.worksheet.table import Table, TableStyleInfo
|
| 11 |
+
import tabula
|
| 12 |
|
| 13 |
def extract_pages(pdf_path, start_page, end_page, output_path):
|
| 14 |
reader = PdfReader(pdf_path)
|
|
|
|
| 43 |
|
| 44 |
|
| 45 |
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def extract_tables_camelot_or_tabula(pdf_path):
|
| 50 |
+
try:
|
| 51 |
+
tables = camelot.read_pdf(pdf_path, pages='all', flavor='stream')
|
| 52 |
+
return [table.df for table in tables]
|
| 53 |
+
except Exception as e:
|
| 54 |
+
print(f"Camelot failed with error: {e}")
|
| 55 |
+
print("Trying with Tabula...")
|
| 56 |
+
dfs = tabula.read_pdf(pdf_path, pages='all', multiple_tables=True)
|
| 57 |
+
return dfs
|
| 58 |
+
|
| 59 |
|
| 60 |
def get_numeric_count(row):
|
| 61 |
# Get the number of numerical values in a row
|
| 62 |
+
return sum(1 for x in row if (pd.notna(pd.to_numeric(str(x).replace(",", "").strip('()'), errors='coerce')) or x in ['-','–']))
|
| 63 |
|
| 64 |
|
| 65 |
def convert_to_numeric(value):
|
|
|
|
| 67 |
value = '-' + value[1:-1]
|
| 68 |
|
| 69 |
if all(char.isdigit() or char in '-,.' for char in str(value)):
|
| 70 |
+
cleaned_value = pd.to_numeric(str(value).replace(',', ''), errors='coerce')
|
| 71 |
return cleaned_value
|
| 72 |
return value
|
| 73 |
|
| 74 |
def get_headers(dataframes):
|
| 75 |
# Get the dataframe columns name
|
| 76 |
+
# if len(dataframes) >= 2:
|
| 77 |
+
# df_for_columns_names = dataframes[1]
|
| 78 |
+
# else:
|
| 79 |
+
# df_for_columns_names = dataframes[0]
|
| 80 |
+
first_numeric_idx = None
|
| 81 |
+
|
| 82 |
+
order = list(range(1, len(dataframes))) + [0]
|
| 83 |
+
|
| 84 |
+
for k in order:
|
| 85 |
+
if first_numeric_idx is None:
|
| 86 |
+
df_for_columns_names = dataframes[k]
|
| 87 |
+
df_for_columns_names = df_for_columns_names.astype(str).where(pd.notna(df_for_columns_names), "")
|
| 88 |
+
for i, row in df_for_columns_names.iterrows():
|
| 89 |
+
numeric_count = get_numeric_count(row)
|
| 90 |
+
if numeric_count >= 2:
|
| 91 |
+
first_numeric_idx = i
|
| 92 |
+
break
|
| 93 |
+
if first_numeric_idx is not None:
|
| 94 |
+
break
|
| 95 |
|
|
|
|
| 96 |
|
| 97 |
new_header = [" ".join(filter(None, df_for_columns_names.iloc[:first_numeric_idx, col].values)) for col in range(df_for_columns_names.shape[1])]
|
| 98 |
|
|
|
|
| 100 |
|
| 101 |
def clean_dataframe(df,header):
|
| 102 |
# Rule : if a row is not numerical, merge it with the next numerical one
|
| 103 |
+
if len(header) < len(df.columns):
|
| 104 |
+
df.columns = header + [f"Unnamed_{i}" for i in range(len(header), len(df.columns))]
|
| 105 |
+
elif len(header) > len(df.columns):
|
| 106 |
+
df.columns = header[:len(df.columns)]
|
| 107 |
+
else:
|
| 108 |
+
df.columns = header
|
| 109 |
first_numeric_idx = None
|
| 110 |
for i, row in df.iterrows():
|
| 111 |
numeric_count = get_numeric_count(row)
|
|
|
|
| 128 |
buffer = list(df.iloc[i].copy())
|
| 129 |
else:
|
| 130 |
buffer = [
|
| 131 |
+
" ".join(filter(lambda x: x not in [None, "None", ""], [str(buffer[j]), str(df.iloc[i, j])]))
|
| 132 |
for j in range(df.shape[1])
|
| 133 |
]
|
| 134 |
merged_rows.append(i)
|
| 135 |
else:
|
| 136 |
if buffer is not None:
|
| 137 |
df.iloc[i] = [
|
| 138 |
+
" ".join(filter(lambda x: x not in [None, "None", ""], [str(buffer[j]), str(df.iloc[i, j])]))
|
| 139 |
for j in range(df.shape[1])
|
| 140 |
]
|
| 141 |
buffer = None
|
|
|
|
| 144 |
return clean_df
|
| 145 |
|
| 146 |
|
| 147 |
+
def clean_and_concatenate_tables(dataframes):
|
|
|
|
|
|
|
| 148 |
for i in range(len(dataframes)):
|
| 149 |
df = dataframes[i]
|
| 150 |
row_counts = df.apply(lambda row: row.notna().sum() - (row.astype(str) == "").sum(), axis=1)
|
|
|
|
| 152 |
dataframes[i] = df.loc[row_counts >= 1, col_counts >= 3].reset_index(drop = True)
|
| 153 |
|
| 154 |
new_header = get_headers(dataframes)
|
|
|
|
| 155 |
cleaned_dfs = []
|
| 156 |
|
| 157 |
for df in dataframes:
|
| 158 |
+
if len(df.columns) >= 3 :
|
| 159 |
+
cleaned_dfs.append(clean_dataframe(df,new_header))
|
| 160 |
+
|
| 161 |
+
cleaned_dfs = [df.reset_index(drop=True) for df in cleaned_dfs if isinstance(df, pd.DataFrame) and not df.empty]
|
| 162 |
+
|
| 163 |
+
if not cleaned_dfs:
|
| 164 |
+
raise ValueError("After cleaning, no valid dataframe left.")
|
| 165 |
+
|
| 166 |
+
for _, df in enumerate(cleaned_dfs):
|
| 167 |
+
if any(col == '' for col in df.columns): # Check if there are empty column names
|
| 168 |
+
df.columns = [f"col_{j}" if col == '' else col for j, col in enumerate(df.columns)]
|
| 169 |
|
| 170 |
concatenated_df = pd.concat(cleaned_dfs, ignore_index=True)
|
| 171 |
+
|
| 172 |
+
if concatenated_df.shape[0] <= 4 :
|
| 173 |
+
raise ValueError("Dataframe too small, probable mistake")
|
| 174 |
+
if concatenated_df.shape[1] <= 2 :
|
| 175 |
+
raise ValueError("Less than 3 columns, probable mistake")
|
| 176 |
+
print("Success of conversion : dataframe of shape ",concatenated_df.shape)
|
| 177 |
return concatenated_df
|
| 178 |
|
| 179 |
|
| 180 |
+
|
| 181 |
def convert_to_excel(reduced_pdf_folder, output_folder):
|
| 182 |
if os.path.exists(output_folder):
|
| 183 |
shutil.rmtree(output_folder)
|
| 184 |
os.makedirs(output_folder)
|
| 185 |
|
| 186 |
+
failed_folder = os.path.join(output_folder, "failed_to_convert")
|
| 187 |
+
if os.path.exists(failed_folder):
|
| 188 |
+
shutil.rmtree(failed_folder)
|
| 189 |
+
os.makedirs(failed_folder)
|
| 190 |
+
|
| 191 |
+
if os.path.exists("./log_errors.txt"):
|
| 192 |
+
os.remove("./log_errors.txt")
|
| 193 |
+
|
| 194 |
+
number_of_files = 0
|
| 195 |
+
number_of_fails = 0
|
| 196 |
for filename in os.listdir(reduced_pdf_folder):
|
| 197 |
if filename.endswith('.pdf'):
|
| 198 |
+
number_of_files += 1
|
| 199 |
+
print("Trying to convert :", filename, "to excel")
|
| 200 |
pdf_path = os.path.join(reduced_pdf_folder, filename)
|
| 201 |
+
try:
|
| 202 |
+
dataframes = extract_tables_camelot_or_tabula(pdf_path)
|
| 203 |
+
if not dataframes:
|
| 204 |
+
raise ValueError(f'No tables found in {filename}')
|
| 205 |
+
concatenated_df = clean_and_concatenate_tables(dataframes)
|
| 206 |
excel_path = os.path.join(output_folder, filename.replace('.pdf', '.xlsx'))
|
| 207 |
|
| 208 |
for col in concatenated_df.columns:
|
|
|
|
| 223 |
ws.cell(row=r_idx + 1, column=c_idx + 1, value=numeric_value)
|
| 224 |
percentage_cells.append((r_idx + 1, c_idx + 1))
|
| 225 |
|
| 226 |
+
tab = Table(displayName="Table1", ref=ws.dimensions)
|
| 227 |
style = TableStyleInfo(
|
| 228 |
name="TableStyleMedium9",
|
| 229 |
showFirstColumn=False,
|
|
|
|
| 237 |
|
| 238 |
# Ajuster la largeur des colonnes
|
| 239 |
for column_cells in ws.columns:
|
| 240 |
+
length = min(max(len(str(cell.value)) for cell in column_cells), 30)
|
| 241 |
ws.column_dimensions[column_cells[0].column_letter].width = length + 2
|
| 242 |
|
| 243 |
for row, col in percentage_cells:
|
| 244 |
cell = ws.cell(row=row, column=col)
|
| 245 |
cell.number_format = numbers.BUILTIN_FORMATS[10]
|
| 246 |
wb.save(excel_path)
|
| 247 |
+
except Exception as e:
|
| 248 |
+
error_message = f"Error converting {filename}: {e}"
|
| 249 |
+
print(error_message)
|
| 250 |
+
number_of_fails += 1
|
| 251 |
+
shutil.copy(pdf_path, os.path.join(failed_folder, filename))
|
| 252 |
+
with open("./log_errors.txt", "a") as log_file:
|
| 253 |
+
log_file.write(error_message + "\n")
|
| 254 |
+
print("Number of files considered : ",number_of_files)
|
| 255 |
+
print("Number of success : ", number_of_files - number_of_fails)
|
| 256 |
+
print("Number of fails : ", number_of_fails)
|
| 257 |
+
shutil.make_archive(base_name="./output", format='zip', root_dir=output_folder)
|
| 258 |
|
| 259 |
|
| 260 |
def reduce_and_convert(input_folder):
|
| 261 |
reduced_pdf_folder = "./reduced_pdf"
|
| 262 |
+
output_folder = "./outputs"
|
| 263 |
reduce_pdf(input_folder,reduced_pdf_folder)
|
| 264 |
convert_to_excel(reduced_pdf_folder, output_folder)
|
| 265 |
|
requirements.txt
CHANGED
|
@@ -2,3 +2,5 @@ PyPDF2
|
|
| 2 |
pandas
|
| 3 |
camelot-py
|
| 4 |
openpyxl
|
|
|
|
|
|
|
|
|
| 2 |
pandas
|
| 3 |
camelot-py
|
| 4 |
openpyxl
|
| 5 |
+
PyCryptodome
|
| 6 |
+
tabula
|