File size: 17,173 Bytes
ff7f5af
 
90d64c3
6f708fa
ff7f5af
413e290
ff7f5af
 
90d64c3
ff7f5af
 
6f708fa
90d64c3
 
cc5db28
 
 
90d64c3
 
cc5db28
 
 
 
 
90d64c3
 
 
 
 
 
2662f4d
 
 
ff7f5af
 
 
79eef31
 
 
 
2662f4d
ff7f5af
 
2662f4d
ff7f5af
2662f4d
ff7f5af
79eef31
ff7f5af
79eef31
 
 
 
2662f4d
79eef31
 
2f6f1b4
2662f4d
 
 
 
 
 
f977e03
 
e05222e
2f6f1b4
ff7f5af
 
22371d1
e95c348
ff7f5af
 
 
413e290
ff7f5af
2662f4d
ff7f5af
 
 
 
2662f4d
79eef31
2662f4d
79eef31
ff7f5af
 
 
 
ddec57b
ff7f5af
ddec57b
79eef31
 
ddec57b
ff7f5af
ddec57b
79eef31
2662f4d
f1a0bd5
d8ab2f5
413e290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79eef31
e95c348
 
 
a0eb807
e95c348
 
 
 
 
 
79eef31
ff7f5af
 
 
 
 
 
 
 
 
 
 
 
 
09f419b
79eef31
 
 
 
 
 
 
 
 
ff7f5af
2662f4d
413e290
 
 
 
 
 
574a745
 
e95c348
2662f4d
 
 
79eef31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2662f4d
79eef31
 
 
 
ff7f5af
79eef31
 
 
 
 
 
 
ff7f5af
 
 
79eef31
 
 
 
 
 
ff7f5af
 
 
 
79eef31
 
 
ff7f5af
2662f4d
 
 
 
413e290
ff7f5af
2662f4d
ff7f5af
 
2662f4d
 
ff7f5af
 
2662f4d
ff7f5af
 
79eef31
 
 
ff7f5af
79eef31
 
ff7f5af
 
2662f4d
ff7f5af
 
 
2662f4d
ff7f5af
 
 
 
 
 
79eef31
ff7f5af
79eef31
ff7f5af
79eef31
 
ff7f5af
 
2662f4d
ff7f5af
 
79eef31
ff7f5af
79eef31
 
ff7f5af
 
2662f4d
ff7f5af
 
79eef31
ff7f5af
79eef31
 
ff7f5af
 
2662f4d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import subprocess
subprocess.run(['sh', './spaces.sh'])
import spaces

import os

os.environ['PYTORCH_NVML_BASED_CUDA_CHECK'] = '1'
os.environ['TORCH_LINALG_PREFER_CUSOLVER'] = '1'
os.environ['PYTORCH_ALLOC_CONF'] = 'expandable_segments:True,pinned_use_background_threads:True'
os.environ["SAFETENSORS_FAST_GPU"] = "1"
os.environ['HF_HUB_ENABLE_HF_TRANSFER'] = '1'

import torch

torch.backends.cuda.matmul.allow_tf32 = False  #  torch 2.8
torch.backends.cudnn.allow_tf32 = False        #  torch 2.8

torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
#torch.backends.fp32_precision = "ieee"  torch 2.9
#torch.backends.cuda.matmul.fp32_precision = "ieee"  torch 2.9
#torch.backends.cudnn.fp32_precision = "ieee"  torch 2.9
#torch.backends.cudnn.conv.fp32_precision = "ieee"  torch 2.9
#torch.backends.cudnn.rnn.fp32_precision = "ieee"  torch 2.9
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
torch.backends.cuda.preferred_blas_library="cublas"
torch.backends.cuda.preferred_linalg_library="cusolver"
torch.set_float32_matmul_precision("highest")

import gradio as gr
import numpy as np
import random
import datetime
import threading
import io
from PIL import Image

# For Ultra HDR
import pillow_ultrahdr

from google.oauth2 import service_account
from google.cloud import storage

import torch

@spaces.GPU(required=True)
def install_dependencies():
    subprocess.run(['sh', './flashattn.sh'])
    # Install the UltraHDR library
    print("Installing pillow-ultrahdr...")
    subprocess.run(['pip', 'install', 'pillow-ultrahdr'])
    print("βœ… pillow-ultrahdr installed.")

# Install all dependencies
# install_dependencies()

torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
torch.backends.cuda.preferred_blas_library="cublas"
torch.backends.cuda.preferred_linalg_library="cusolver"
torch.set_float32_matmul_precision("highest")

from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, AutoencoderKL
from image_gen_aux import UpscaleWithModel


GCS_BUCKET_NAME = os.getenv("GCS_BUCKET_NAME")
GCS_SA_KEY = os.getenv("GCS_SA_KEY") # The full JSON key content as a string
gcs_client = None

if GCS_SA_KEY and GCS_BUCKET_NAME:
    try:
        credentials_info = eval(GCS_SA_KEY) # Using eval is safe here if you trust the secret source
        credentials = service_account.Credentials.from_service_account_info(credentials_info)
        gcs_client = storage.Client(credentials=credentials)
        print("βœ… GCS Client initialized successfully.")
    except Exception as e:
        print(f"❌ Failed to initialize GCS client: ")

def upload_to_gcs(image_bytes, filename):
    if not gcs_client:
        print("⚠️ GCS client not initialized. Skipping upload.")
        return
    try:
        print(f"--> Starting GCS upload for {filename}...")
        bucket = gcs_client.bucket(GCS_BUCKET_NAME)
        blob = bucket.blob(f"stablediff/{filename}")
        # The image_bytes is already a bytes object, so we can upload it directly
        blob.upload_from_string(image_bytes, content_type='image/jpeg')
        print(f"βœ… Successfully uploaded {filename} to GCS.")
    except Exception as e:
        print(f"❌ An error occurred during GCS upload for {filename}: {e}")


device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

from diffusers.models.attention_processor import AttnProcessor2_0
from kernels import get_kernel
fa3_kernel = get_kernel("kernels-community/flash-attn3") # Or vllm-flash-attn3
class FlashAttentionProcessor(AttnProcessor2_0):
    def __call__(
        self,
        attn,
        hidden_states,
        encoder_hidden_states=None, # This will be present for cross-attention
        attention_mask=None,
        temb=None, # This might be present in some attention mechanisms, pass through if not used directly
        **kwargs,
    ):
        # Determine if it's self-attention or cross-attention
        # For self-attention, encoder_hidden_states is None or identical to hidden_states
        is_cross_attention = encoder_hidden_states is not None and encoder_hidden_states.shape[1] != hidden_states.shape[1]
        # SD3.5 uses DiT, where hidden_states are often 3D (B, Seq, Dim)
        # However, attention can be within a transformer block which might internally reshape.
        # Ensure your inputs (query, key, value) are properly shaped for the kernel.
        # The kernel expects (Batch, Heads, Sequence, Dim_Head)
        query = attn.to_q(hidden_states)
        if is_cross_attention:
            key = attn.to_k(encoder_hidden_states)
            value = attn.to_v(encoder_hidden_states)
        else: # Self-attention
            key = attn.to_k(hidden_states)
            value = attn.to_v(hidden_states)
        scale = attn.scale
        query = query * scale
        b, t, c = query.shape # B=batch_size, T=sequence_length, C=embedding_dim
        h = attn.heads
        d = c // h # dim_per_head
        # Reshape to (Batch, Heads, Sequence, Dim_Head) for Flash Attention kernel
        q_reshaped = query.reshape(b, t, h, d).permute(0, 2, 1, 3)
        k_reshaped = key.reshape(b, t, h, d).permute(0, 2, 1, 3)
        v_reshaped = value.reshape(b, t, h, d).permute(0, 2, 1, 3)
        out_reshaped = torch.empty_like(q_reshaped)
        # Call the Flash Attention kernel
        fa3_kernel.attention(q_reshaped, k_reshaped, v_reshaped, out_reshaped)
        # Reshape output back to (Batch, Sequence, Heads * Dim_Head)
        out = out_reshaped.permute(0, 2, 1, 3).reshape(b, t, c)
        out = attn.to_out(out)
        return out

@spaces.GPU(duration=120)
def compile_transformer():
    with spaces.aoti_capture(pipe.transformer) as call:
        pipe("A majestic, ancient Egyptian Sphinx stands sentinel in a large, clear pool under a bright, golden desert sun. Around its weathered stone base, several sleek, playful dolphins gracefully navigate the turquoise waters. The surrounding environment features lush, exotic papyrus plants and distant pyramids under a cloudless sky, conveying a sense of timeless wonder and serene majesty.")
    exported = torch.export.export(
        pipe.transformer,
        args=call.args,
        kwargs=call.kwargs,
    )
    return spaces.aoti_compile(exported)

def load_model():
    pipe = StableDiffusion3Pipeline.from_pretrained(
        "ford442/stable-diffusion-3.5-large-bf16",
        trust_remote_code=True,
        transformer=None, # Load transformer separately
        use_safetensors=True
    )
    ll_transformer=SD3Transformer2DModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='transformer').to(device, dtype=torch.bfloat16)
    pipe.transformer=ll_transformer
    pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors")
    pipe.to(device=device, dtype=torch.bfloat16)
    upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(device)
    return pipe, upscaler_2

def srgb_to_linear(img_tensor):
    """Converts a batched sRGB tensor [0, 1] to a linear tensor."""
    # Using the standard sRGB to linear conversion formula
    return torch.where(
        img_tensor <= 0.04045,
        img_tensor / 12.92,
        ((img_tensor + 0.055) / 1.055).pow(2.4)
    )

pipe, upscaler_2 = load_model()

fa_processor = FlashAttentionProcessor()

for name, module in pipe.transformer.named_modules():
    if isinstance(module, AttnProcessor2_0):
        module.processor = fa_processor

compiled_transformer = compile_transformer()
spaces.aoti_apply(compiled_transformer, pipe.transformer)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 4096

# Consolidated generation function
def generate_images(duration, prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress=gr.Progress(track_tqdm=True)):
    @spaces.GPU(duration=duration)
    def _generate():
        seed = random.randint(0, MAX_SEED)
        generator = torch.Generator(device=device).manual_seed(seed)
        print('-- generating image --')
        torch.cuda.empty_cache()
        torch.cuda.reset_peak_memory_stats()
        
        # Generate tensor output in sRGB space
        sd_image_tensor_srgb = pipe(
            prompt=prompt, prompt_2=prompt, prompt_3=prompt,
            negative_prompt=neg_prompt_1, negative_prompt_2=neg_prompt_2, negative_prompt_3=neg_prompt_3,
            guidance_scale=guidance, num_inference_steps=steps,
            width=width, height=height, generator=generator,
            max_sequence_length=384,
            output_type="pt"  # Request tensor output
        ).images

        # Convert the sRGB tensor [0,1] to a PIL Image for display and upscaling
        sd_image_pil_srgb = Image.fromarray((sd_image_tensor_srgb.squeeze(0).permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8))
        print('-- got image --')
        
        # --- Upscaling ---
        torch.cuda.empty_cache()
        torch.cuda.reset_peak_memory_stats()
        with torch.no_grad():
            upscale = upscaler_2(sd_image_pil_srgb, tiling=True, tile_width=256, tile_height=256)
            upscale2 = upscaler_2(upscale, tiling=True, tile_width=256, tile_height=256)
        print('-- got upscaled image --')

        # --- HDR Conversion and Saving ---
        # Convert the original sRGB tensor to linear space
        sd_image_tensor_linear = srgb_to_linear(sd_image_tensor_srgb)
        # Convert the linear tensor to a PIL Image (this will be HDR data)
        sd_image_pil_linear = Image.fromarray((sd_image_tensor_linear.squeeze(0).permute(1, 2, 0).clamp(0, 1).cpu().numpy() * 255).astype(np.uint8))

        # Save to a bytes buffer as JPEG Ultra HDR
        buffer = io.BytesIO()
        pillow_ultrahdr.save_ultrahdr(
            sdr=sd_image_pil_srgb, # The standard dynamic range image
            hdr=sd_image_pil_linear, # The linear (high dynamic range) image
            outfile=buffer,
            quality=90 # Standard JPEG quality setting
        )
        hdr_image_bytes = buffer.getvalue()
        
        # For the upscaled image, we will do the same
        # First convert upscaled PIL image to tensor, normalize to [0,1]
        upscaled_tensor_srgb = torch.from_numpy(np.array(upscale2)).float().to(device) / 255.0
        upscaled_tensor_srgb = upscaled_tensor_srgb.permute(2, 0, 1).unsqueeze(0) # HWC to BCHW
        upscaled_tensor_linear = srgb_to_linear(upscaled_tensor_srgb)
        upscaled_pil_linear = Image.fromarray((upscaled_tensor_linear.squeeze(0).permute(1, 2, 0).clamp(0, 1).cpu().numpy() * 255).astype(np.uint8))
        
        upscaled_buffer = io.BytesIO()
        pillow_ultrahdr.save_ultrahdr(sdr=upscale2, hdr=upscaled_pil_linear, outfile=upscaled_buffer, quality=95)
        upscaled_hdr_image_bytes = upscaled_buffer.getvalue()

        # Return the sRGB PIL image for display, and the HDR bytes for upload
        return sd_image_pil_srgb, hdr_image_bytes, upscaled_hdr_image_bytes, prompt
    
    return _generate()

# Consolidated upload function
def run_inference_and_upload(duration, prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, save_consent, progress=gr.Progress(track_tqdm=True)):
    # Generate images and get both PIL (for display) and bytes (for upload)
    sd_image_pil, sd_hdr_bytes, upscaled_hdr_bytes, expanded_prompt = generate_images(
        duration, prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress
    )
    
    if save_consent:
        print("βœ… User consented to save. Preparing uploads...")
        timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
        sd_filename = f"sd35ll_{}.jpg"
        upscale_filename = f"sd35ll_upscale_{}.jpg"
        
        # Upload using threading
        sd_thread = threading.Thread(target=upload_to_gcs, args=(sd_hdr_bytes, sd_filename))
        upscale_thread = threading.Thread(target=upload_to_gcs, args=(upscaled_hdr_bytes, upscale_filename))
        sd_thread.start()
        upscale_thread.start()
    else:
        print("ℹ️ User did not consent to save. Skipping upload.")
        
    # Return the standard sRGB PIL image to the Gradio interface for display
    return sd_image_pil, expanded_prompt

css = """
#col-container {margin: 0 auto;max-width: 640px;}
body{background-color: blue;}
"""

with gr.Blocks(theme=gr.themes.Origin(), css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # StableDiffusion 3.5 Large with UltraReal lora test")
        expanded_prompt_output = gr.Textbox(label="Prompt", lines=1)
        with gr.Row():
            prompt = gr.Text(
                label="Prompt", show_label=False, max_lines=1,
                placeholder="Enter your prompt", container=False,
            )
            run_button_30 = gr.Button("Run30", scale=0, variant="primary")
            run_button_60 = gr.Button("Run60", scale=0, variant="primary")
            run_button_110 = gr.Button("Run110", scale=0, variant="primary")
        # The result will display the standard PIL image, the HDR is saved/uploaded
        result = gr.Image(label="Result (SDR Preview)", show_label=False, type="pil")
        save_consent_checkbox = gr.Checkbox(
            label="βœ… Anonymously upload result to a public gallery (as JPEG Ultra HDR)",
            value=True,
            info="Check this box to help us by contributing your image."
        )
        with gr.Accordion("Advanced Settings", open=True):
            negative_prompt_1 = gr.Text(label="Negative prompt 1", max_lines=1, placeholder="Enter a negative prompt", value="bad anatomy, poorly drawn hands, distorted face, blurry, out of frame, low resolution, grainy, pixelated, disfigured, mutated, extra limbs, bad composition")
            negative_prompt_2 = gr.Text(label="Negative prompt 2", max_lines=1, placeholder="Enter a second negative prompt", value="unrealistic, cartoon, anime, sketch, painting, drawing, illustration, graphic, digital art, render, 3d, blurry, deformed, disfigured, poorly drawn, bad anatomy, mutated, extra limbs, ugly, out of frame, bad composition, low resolution, grainy, pixelated, noisy, oversaturated, undersaturated, (worst quality, low quality:1.3), (bad hands, missing fingers:1.2)")
            negative_prompt_3 = gr.Text(label="Negative prompt 3", max_lines=1, placeholder="Enter a third negative prompt", value="(worst quality, low quality:1.3), (bad anatomy, bad hands, missing fingers, extra digit, fewer digits:1.2), (blurry:1.1), cropped, watermark, text, signature, logo, jpeg artifacts, (ugly, deformed, disfigured:1.2), (poorly drawn:1.2), mutated, extra limbs, (bad proportions, gross proportions:1.2), (malformed limbs, missing arms, missing legs, extra arms, extra legs:1.2), (fused fingers, too many fingers, long neck:1.2), (unnatural body, unnatural pose:1.1), out of frame, (bad composition, poorly composed:1.1), (oversaturated, undersaturated:1.1), (grainy, pixelated:1.1), (low resolution, noisy:1.1), (unrealistic, distorted:1.1), (extra fingers, mutated hands, poorly drawn hands, bad hands:1.3), (missing fingers:1.3)")
            with gr.Row():
                width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
                height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
            with gr.Row():
                guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=30.0, step=0.1, value=4.2)
                num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=150, step=1, value=60)

        # Clicks now call the same function with a different duration parameter
        run_button_30.click(
            fn=lambda *args: run_inference_and_upload(45, *args),
            inputs=[
                prompt, negative_prompt_1, negative_prompt_2, negative_prompt_3,
                width, height, guidance_scale, num_inference_steps, save_consent_checkbox
            ],
            outputs=[result, expanded_prompt_output],
        )

        run_button_60.click(
            fn=lambda *args: run_inference_and_upload(70, *args),
            inputs=[
                prompt, negative_prompt_1, negative_prompt_2, negative_prompt_3,
                width, height, guidance_scale, num_inference_steps, save_consent_checkbox
            ],
            outputs=[result, expanded_prompt_output],
        )

        run_button_110.click(
            fn=lambda *args: run_inference_and_upload(120, *args),
            inputs=[
                prompt, negative_prompt_1, negative_prompt_2, negative_prompt_3,
                width, height, guidance_scale, num_inference_steps, save_consent_checkbox
            ],
            outputs=[result, expanded_prompt_output],
        )

if __name__ == "__main__":
    demo.launch()