File size: 17,173 Bytes
ff7f5af 90d64c3 6f708fa ff7f5af 413e290 ff7f5af 90d64c3 ff7f5af 6f708fa 90d64c3 cc5db28 90d64c3 cc5db28 90d64c3 2662f4d ff7f5af 79eef31 2662f4d ff7f5af 2662f4d ff7f5af 2662f4d ff7f5af 79eef31 ff7f5af 79eef31 2662f4d 79eef31 2f6f1b4 2662f4d f977e03 e05222e 2f6f1b4 ff7f5af 22371d1 e95c348 ff7f5af 413e290 ff7f5af 2662f4d ff7f5af 2662f4d 79eef31 2662f4d 79eef31 ff7f5af ddec57b ff7f5af ddec57b 79eef31 ddec57b ff7f5af ddec57b 79eef31 2662f4d f1a0bd5 d8ab2f5 413e290 79eef31 e95c348 a0eb807 e95c348 79eef31 ff7f5af 09f419b 79eef31 ff7f5af 2662f4d 413e290 574a745 e95c348 2662f4d 79eef31 2662f4d 79eef31 ff7f5af 79eef31 ff7f5af 79eef31 ff7f5af 79eef31 ff7f5af 2662f4d 413e290 ff7f5af 2662f4d ff7f5af 2662f4d ff7f5af 2662f4d ff7f5af 79eef31 ff7f5af 79eef31 ff7f5af 2662f4d ff7f5af 2662f4d ff7f5af 79eef31 ff7f5af 79eef31 ff7f5af 79eef31 ff7f5af 2662f4d ff7f5af 79eef31 ff7f5af 79eef31 ff7f5af 2662f4d ff7f5af 79eef31 ff7f5af 79eef31 ff7f5af 2662f4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
import subprocess
subprocess.run(['sh', './spaces.sh'])
import spaces
import os
os.environ['PYTORCH_NVML_BASED_CUDA_CHECK'] = '1'
os.environ['TORCH_LINALG_PREFER_CUSOLVER'] = '1'
os.environ['PYTORCH_ALLOC_CONF'] = 'expandable_segments:True,pinned_use_background_threads:True'
os.environ["SAFETENSORS_FAST_GPU"] = "1"
os.environ['HF_HUB_ENABLE_HF_TRANSFER'] = '1'
import torch
torch.backends.cuda.matmul.allow_tf32 = False # torch 2.8
torch.backends.cudnn.allow_tf32 = False # torch 2.8
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
#torch.backends.fp32_precision = "ieee" torch 2.9
#torch.backends.cuda.matmul.fp32_precision = "ieee" torch 2.9
#torch.backends.cudnn.fp32_precision = "ieee" torch 2.9
#torch.backends.cudnn.conv.fp32_precision = "ieee" torch 2.9
#torch.backends.cudnn.rnn.fp32_precision = "ieee" torch 2.9
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
torch.backends.cuda.preferred_blas_library="cublas"
torch.backends.cuda.preferred_linalg_library="cusolver"
torch.set_float32_matmul_precision("highest")
import gradio as gr
import numpy as np
import random
import datetime
import threading
import io
from PIL import Image
# For Ultra HDR
import pillow_ultrahdr
from google.oauth2 import service_account
from google.cloud import storage
import torch
@spaces.GPU(required=True)
def install_dependencies():
subprocess.run(['sh', './flashattn.sh'])
# Install the UltraHDR library
print("Installing pillow-ultrahdr...")
subprocess.run(['pip', 'install', 'pillow-ultrahdr'])
print("β
pillow-ultrahdr installed.")
# Install all dependencies
# install_dependencies()
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
torch.backends.cuda.preferred_blas_library="cublas"
torch.backends.cuda.preferred_linalg_library="cusolver"
torch.set_float32_matmul_precision("highest")
from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, AutoencoderKL
from image_gen_aux import UpscaleWithModel
GCS_BUCKET_NAME = os.getenv("GCS_BUCKET_NAME")
GCS_SA_KEY = os.getenv("GCS_SA_KEY") # The full JSON key content as a string
gcs_client = None
if GCS_SA_KEY and GCS_BUCKET_NAME:
try:
credentials_info = eval(GCS_SA_KEY) # Using eval is safe here if you trust the secret source
credentials = service_account.Credentials.from_service_account_info(credentials_info)
gcs_client = storage.Client(credentials=credentials)
print("β
GCS Client initialized successfully.")
except Exception as e:
print(f"β Failed to initialize GCS client: ")
def upload_to_gcs(image_bytes, filename):
if not gcs_client:
print("β οΈ GCS client not initialized. Skipping upload.")
return
try:
print(f"--> Starting GCS upload for {filename}...")
bucket = gcs_client.bucket(GCS_BUCKET_NAME)
blob = bucket.blob(f"stablediff/{filename}")
# The image_bytes is already a bytes object, so we can upload it directly
blob.upload_from_string(image_bytes, content_type='image/jpeg')
print(f"β
Successfully uploaded {filename} to GCS.")
except Exception as e:
print(f"β An error occurred during GCS upload for {filename}: {e}")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
from diffusers.models.attention_processor import AttnProcessor2_0
from kernels import get_kernel
fa3_kernel = get_kernel("kernels-community/flash-attn3") # Or vllm-flash-attn3
class FlashAttentionProcessor(AttnProcessor2_0):
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None, # This will be present for cross-attention
attention_mask=None,
temb=None, # This might be present in some attention mechanisms, pass through if not used directly
**kwargs,
):
# Determine if it's self-attention or cross-attention
# For self-attention, encoder_hidden_states is None or identical to hidden_states
is_cross_attention = encoder_hidden_states is not None and encoder_hidden_states.shape[1] != hidden_states.shape[1]
# SD3.5 uses DiT, where hidden_states are often 3D (B, Seq, Dim)
# However, attention can be within a transformer block which might internally reshape.
# Ensure your inputs (query, key, value) are properly shaped for the kernel.
# The kernel expects (Batch, Heads, Sequence, Dim_Head)
query = attn.to_q(hidden_states)
if is_cross_attention:
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
else: # Self-attention
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
scale = attn.scale
query = query * scale
b, t, c = query.shape # B=batch_size, T=sequence_length, C=embedding_dim
h = attn.heads
d = c // h # dim_per_head
# Reshape to (Batch, Heads, Sequence, Dim_Head) for Flash Attention kernel
q_reshaped = query.reshape(b, t, h, d).permute(0, 2, 1, 3)
k_reshaped = key.reshape(b, t, h, d).permute(0, 2, 1, 3)
v_reshaped = value.reshape(b, t, h, d).permute(0, 2, 1, 3)
out_reshaped = torch.empty_like(q_reshaped)
# Call the Flash Attention kernel
fa3_kernel.attention(q_reshaped, k_reshaped, v_reshaped, out_reshaped)
# Reshape output back to (Batch, Sequence, Heads * Dim_Head)
out = out_reshaped.permute(0, 2, 1, 3).reshape(b, t, c)
out = attn.to_out(out)
return out
@spaces.GPU(duration=120)
def compile_transformer():
with spaces.aoti_capture(pipe.transformer) as call:
pipe("A majestic, ancient Egyptian Sphinx stands sentinel in a large, clear pool under a bright, golden desert sun. Around its weathered stone base, several sleek, playful dolphins gracefully navigate the turquoise waters. The surrounding environment features lush, exotic papyrus plants and distant pyramids under a cloudless sky, conveying a sense of timeless wonder and serene majesty.")
exported = torch.export.export(
pipe.transformer,
args=call.args,
kwargs=call.kwargs,
)
return spaces.aoti_compile(exported)
def load_model():
pipe = StableDiffusion3Pipeline.from_pretrained(
"ford442/stable-diffusion-3.5-large-bf16",
trust_remote_code=True,
transformer=None, # Load transformer separately
use_safetensors=True
)
ll_transformer=SD3Transformer2DModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='transformer').to(device, dtype=torch.bfloat16)
pipe.transformer=ll_transformer
pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors")
pipe.to(device=device, dtype=torch.bfloat16)
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(device)
return pipe, upscaler_2
def srgb_to_linear(img_tensor):
"""Converts a batched sRGB tensor [0, 1] to a linear tensor."""
# Using the standard sRGB to linear conversion formula
return torch.where(
img_tensor <= 0.04045,
img_tensor / 12.92,
((img_tensor + 0.055) / 1.055).pow(2.4)
)
pipe, upscaler_2 = load_model()
fa_processor = FlashAttentionProcessor()
for name, module in pipe.transformer.named_modules():
if isinstance(module, AttnProcessor2_0):
module.processor = fa_processor
compiled_transformer = compile_transformer()
spaces.aoti_apply(compiled_transformer, pipe.transformer)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 4096
# Consolidated generation function
def generate_images(duration, prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress=gr.Progress(track_tqdm=True)):
@spaces.GPU(duration=duration)
def _generate():
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
print('-- generating image --')
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
# Generate tensor output in sRGB space
sd_image_tensor_srgb = pipe(
prompt=prompt, prompt_2=prompt, prompt_3=prompt,
negative_prompt=neg_prompt_1, negative_prompt_2=neg_prompt_2, negative_prompt_3=neg_prompt_3,
guidance_scale=guidance, num_inference_steps=steps,
width=width, height=height, generator=generator,
max_sequence_length=384,
output_type="pt" # Request tensor output
).images
# Convert the sRGB tensor [0,1] to a PIL Image for display and upscaling
sd_image_pil_srgb = Image.fromarray((sd_image_tensor_srgb.squeeze(0).permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8))
print('-- got image --')
# --- Upscaling ---
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
with torch.no_grad():
upscale = upscaler_2(sd_image_pil_srgb, tiling=True, tile_width=256, tile_height=256)
upscale2 = upscaler_2(upscale, tiling=True, tile_width=256, tile_height=256)
print('-- got upscaled image --')
# --- HDR Conversion and Saving ---
# Convert the original sRGB tensor to linear space
sd_image_tensor_linear = srgb_to_linear(sd_image_tensor_srgb)
# Convert the linear tensor to a PIL Image (this will be HDR data)
sd_image_pil_linear = Image.fromarray((sd_image_tensor_linear.squeeze(0).permute(1, 2, 0).clamp(0, 1).cpu().numpy() * 255).astype(np.uint8))
# Save to a bytes buffer as JPEG Ultra HDR
buffer = io.BytesIO()
pillow_ultrahdr.save_ultrahdr(
sdr=sd_image_pil_srgb, # The standard dynamic range image
hdr=sd_image_pil_linear, # The linear (high dynamic range) image
outfile=buffer,
quality=90 # Standard JPEG quality setting
)
hdr_image_bytes = buffer.getvalue()
# For the upscaled image, we will do the same
# First convert upscaled PIL image to tensor, normalize to [0,1]
upscaled_tensor_srgb = torch.from_numpy(np.array(upscale2)).float().to(device) / 255.0
upscaled_tensor_srgb = upscaled_tensor_srgb.permute(2, 0, 1).unsqueeze(0) # HWC to BCHW
upscaled_tensor_linear = srgb_to_linear(upscaled_tensor_srgb)
upscaled_pil_linear = Image.fromarray((upscaled_tensor_linear.squeeze(0).permute(1, 2, 0).clamp(0, 1).cpu().numpy() * 255).astype(np.uint8))
upscaled_buffer = io.BytesIO()
pillow_ultrahdr.save_ultrahdr(sdr=upscale2, hdr=upscaled_pil_linear, outfile=upscaled_buffer, quality=95)
upscaled_hdr_image_bytes = upscaled_buffer.getvalue()
# Return the sRGB PIL image for display, and the HDR bytes for upload
return sd_image_pil_srgb, hdr_image_bytes, upscaled_hdr_image_bytes, prompt
return _generate()
# Consolidated upload function
def run_inference_and_upload(duration, prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, save_consent, progress=gr.Progress(track_tqdm=True)):
# Generate images and get both PIL (for display) and bytes (for upload)
sd_image_pil, sd_hdr_bytes, upscaled_hdr_bytes, expanded_prompt = generate_images(
duration, prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress
)
if save_consent:
print("β
User consented to save. Preparing uploads...")
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
sd_filename = f"sd35ll_{}.jpg"
upscale_filename = f"sd35ll_upscale_{}.jpg"
# Upload using threading
sd_thread = threading.Thread(target=upload_to_gcs, args=(sd_hdr_bytes, sd_filename))
upscale_thread = threading.Thread(target=upload_to_gcs, args=(upscaled_hdr_bytes, upscale_filename))
sd_thread.start()
upscale_thread.start()
else:
print("βΉοΈ User did not consent to save. Skipping upload.")
# Return the standard sRGB PIL image to the Gradio interface for display
return sd_image_pil, expanded_prompt
css = """
#col-container {margin: 0 auto;max-width: 640px;}
body{background-color: blue;}
"""
with gr.Blocks(theme=gr.themes.Origin(), css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # StableDiffusion 3.5 Large with UltraReal lora test")
expanded_prompt_output = gr.Textbox(label="Prompt", lines=1)
with gr.Row():
prompt = gr.Text(
label="Prompt", show_label=False, max_lines=1,
placeholder="Enter your prompt", container=False,
)
run_button_30 = gr.Button("Run30", scale=0, variant="primary")
run_button_60 = gr.Button("Run60", scale=0, variant="primary")
run_button_110 = gr.Button("Run110", scale=0, variant="primary")
# The result will display the standard PIL image, the HDR is saved/uploaded
result = gr.Image(label="Result (SDR Preview)", show_label=False, type="pil")
save_consent_checkbox = gr.Checkbox(
label="β
Anonymously upload result to a public gallery (as JPEG Ultra HDR)",
value=True,
info="Check this box to help us by contributing your image."
)
with gr.Accordion("Advanced Settings", open=True):
negative_prompt_1 = gr.Text(label="Negative prompt 1", max_lines=1, placeholder="Enter a negative prompt", value="bad anatomy, poorly drawn hands, distorted face, blurry, out of frame, low resolution, grainy, pixelated, disfigured, mutated, extra limbs, bad composition")
negative_prompt_2 = gr.Text(label="Negative prompt 2", max_lines=1, placeholder="Enter a second negative prompt", value="unrealistic, cartoon, anime, sketch, painting, drawing, illustration, graphic, digital art, render, 3d, blurry, deformed, disfigured, poorly drawn, bad anatomy, mutated, extra limbs, ugly, out of frame, bad composition, low resolution, grainy, pixelated, noisy, oversaturated, undersaturated, (worst quality, low quality:1.3), (bad hands, missing fingers:1.2)")
negative_prompt_3 = gr.Text(label="Negative prompt 3", max_lines=1, placeholder="Enter a third negative prompt", value="(worst quality, low quality:1.3), (bad anatomy, bad hands, missing fingers, extra digit, fewer digits:1.2), (blurry:1.1), cropped, watermark, text, signature, logo, jpeg artifacts, (ugly, deformed, disfigured:1.2), (poorly drawn:1.2), mutated, extra limbs, (bad proportions, gross proportions:1.2), (malformed limbs, missing arms, missing legs, extra arms, extra legs:1.2), (fused fingers, too many fingers, long neck:1.2), (unnatural body, unnatural pose:1.1), out of frame, (bad composition, poorly composed:1.1), (oversaturated, undersaturated:1.1), (grainy, pixelated:1.1), (low resolution, noisy:1.1), (unrealistic, distorted:1.1), (extra fingers, mutated hands, poorly drawn hands, bad hands:1.3), (missing fingers:1.3)")
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
with gr.Row():
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=30.0, step=0.1, value=4.2)
num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=150, step=1, value=60)
# Clicks now call the same function with a different duration parameter
run_button_30.click(
fn=lambda *args: run_inference_and_upload(45, *args),
inputs=[
prompt, negative_prompt_1, negative_prompt_2, negative_prompt_3,
width, height, guidance_scale, num_inference_steps, save_consent_checkbox
],
outputs=[result, expanded_prompt_output],
)
run_button_60.click(
fn=lambda *args: run_inference_and_upload(70, *args),
inputs=[
prompt, negative_prompt_1, negative_prompt_2, negative_prompt_3,
width, height, guidance_scale, num_inference_steps, save_consent_checkbox
],
outputs=[result, expanded_prompt_output],
)
run_button_110.click(
fn=lambda *args: run_inference_and_upload(120, *args),
inputs=[
prompt, negative_prompt_1, negative_prompt_2, negative_prompt_3,
width, height, guidance_scale, num_inference_steps, save_consent_checkbox
],
outputs=[result, expanded_prompt_output],
)
if __name__ == "__main__":
demo.launch() |