shorecode's picture
Update README.md
10784bd verified
|
raw
history blame
2.25 kB
metadata
library_name: transformers
license: apache-2.0
base_model: shorecode/t5-efficient-tiny-nh8-summarizer
tags:
  - generated_from_trainer
model-index:
  - name: t5-efficient-tiny-nh8-summarizer
    results: []
datasets:
  - shorecode/summary-collection-60k-rows

t5-efficient-tiny-nh8-summarizer

This model is a fine-tuned version of shorecode/t5-efficient-tiny-nh8-summarizer on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6597

Model description

A general purpose text summarizer

Intended uses & limitations

General purpose text summarizer

Training and evaluation data

Trained and evaluated on shorecode/summary-collection-60k-rows

Training procedure

Trained using the Gradio SDK on Hugging Face Spaces using shared Zero GPU(s)

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00015000000000000001
  • train_batch_size: 63
  • eval_batch_size: 63
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.0837 0.2663 200 0.9227
0.9027 0.5326 400 0.8449
0.842 0.7989 600 0.7949
0.7971 1.0652 800 0.7585
0.768 1.3316 1000 0.7288
0.7359 1.5979 1200 0.7069
0.7145 1.8642 1400 0.6898
0.7047 2.1305 1600 0.6773
0.6926 2.3968 1800 0.6678
0.6855 2.6631 2000 0.6620
0.68 2.9294 2200 0.6597

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.4.0+cu121
  • Datasets 3.0.0
  • Tokenizers 0.21.0