File size: 2,246 Bytes
3ea3464
8801266
7bf177e
9f7057c
3ea3464
7bf177e
 
 
 
10784bd
 
3ea3464
 
7bf177e
 
 
 
 
9f7057c
8801266
9f7057c
7bf177e
 
 
c94ba4e
7bf177e
 
3ea3464
c94ba4e
3ea3464
7bf177e
3ea3464
c94ba4e
3ea3464
7bf177e
3ea3464
c94ba4e
 
7bf177e
3ea3464
7bf177e
9f7057c
 
 
7bf177e
 
 
 
 
3ea3464
1513fd3
 
 
 
9f7057c
 
 
 
 
 
 
 
 
 
 
1513fd3
 
7bf177e
3ea3464
7bf177e
 
 
9f7057c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
library_name: transformers
license: apache-2.0
base_model: shorecode/t5-efficient-tiny-nh8-summarizer
tags:
- generated_from_trainer
model-index:
- name: t5-efficient-tiny-nh8-summarizer
  results: []
datasets: 
- shorecode/summary-collection-60k-rows
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-efficient-tiny-nh8-summarizer

This model is a fine-tuned version of [shorecode/t5-efficient-tiny-nh8-summarizer](https://huggingface.co/shorecode/t5-efficient-tiny-nh8-summarizer) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6597

## Model description

A general purpose text summarizer

## Intended uses & limitations

General purpose text summarizer

## Training and evaluation data

Trained and evaluated on shorecode/summary-collection-60k-rows

## Training procedure

Trained using the Gradio SDK on Hugging Face Spaces using shared Zero GPU(s)

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.00015000000000000001
- train_batch_size: 63
- eval_batch_size: 63
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.0837        | 0.2663 | 200  | 0.9227          |
| 0.9027        | 0.5326 | 400  | 0.8449          |
| 0.842         | 0.7989 | 600  | 0.7949          |
| 0.7971        | 1.0652 | 800  | 0.7585          |
| 0.768         | 1.3316 | 1000 | 0.7288          |
| 0.7359        | 1.5979 | 1200 | 0.7069          |
| 0.7145        | 1.8642 | 1400 | 0.6898          |
| 0.7047        | 2.1305 | 1600 | 0.6773          |
| 0.6926        | 2.3968 | 1800 | 0.6678          |
| 0.6855        | 2.6631 | 2000 | 0.6620          |
| 0.68          | 2.9294 | 2200 | 0.6597          |


### Framework versions

- Transformers 4.47.0
- Pytorch 2.4.0+cu121
- Datasets 3.0.0
- Tokenizers 0.21.0