|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: sercetexam9/deberta-v3-large-finetuned-augmentation-LUNAR-TAPT-DAIR |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: deberta-v3-large-finetuned-augmentation-LUNAR-TAPT-DAIR-finetuned-augmentation-LUNAR-TAPT-macro |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# deberta-v3-large-finetuned-augmentation-LUNAR-TAPT-DAIR-finetuned-augmentation-LUNAR-TAPT-macro |
|
|
|
This model is a fine-tuned version of [sercetexam9/deberta-v3-large-finetuned-augmentation-LUNAR-TAPT-DAIR](https://huggingface.co/sercetexam9/deberta-v3-large-finetuned-augmentation-LUNAR-TAPT-DAIR) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1447 |
|
- F1: 0.9370 |
|
- Roc Auc: 0.9481 |
|
- Accuracy: 0.8545 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| |
|
| 0.1249 | 1.0 | 421 | 0.1447 | 0.9370 | 0.9481 | 0.8545 | |
|
| 0.1132 | 2.0 | 842 | 0.1485 | 0.9344 | 0.9512 | 0.8634 | |
|
| 0.0924 | 3.0 | 1263 | 0.1491 | 0.9324 | 0.9528 | 0.8581 | |
|
| 0.0679 | 4.0 | 1684 | 0.1779 | 0.9302 | 0.9433 | 0.8515 | |
|
| 0.0844 | 5.0 | 2105 | 0.1748 | 0.9264 | 0.9429 | 0.8539 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.1 |
|
- Pytorch 2.4.0 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.0 |
|
|