--- library_name: transformers license: mit base_model: sercetexam9/deberta-v3-large-finetuned-augmentation-LUNAR-TAPT-DAIR tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: deberta-v3-large-finetuned-augmentation-LUNAR-TAPT-DAIR-finetuned-augmentation-LUNAR-TAPT-macro results: [] --- # deberta-v3-large-finetuned-augmentation-LUNAR-TAPT-DAIR-finetuned-augmentation-LUNAR-TAPT-macro This model is a fine-tuned version of [sercetexam9/deberta-v3-large-finetuned-augmentation-LUNAR-TAPT-DAIR](https://huggingface.co/sercetexam9/deberta-v3-large-finetuned-augmentation-LUNAR-TAPT-DAIR) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1447 - F1: 0.9370 - Roc Auc: 0.9481 - Accuracy: 0.8545 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.1249 | 1.0 | 421 | 0.1447 | 0.9370 | 0.9481 | 0.8545 | | 0.1132 | 2.0 | 842 | 0.1485 | 0.9344 | 0.9512 | 0.8634 | | 0.0924 | 3.0 | 1263 | 0.1491 | 0.9324 | 0.9528 | 0.8581 | | 0.0679 | 4.0 | 1684 | 0.1779 | 0.9302 | 0.9433 | 0.8515 | | 0.0844 | 5.0 | 2105 | 0.1748 | 0.9264 | 0.9429 | 0.8539 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0