metadata
base_model: nreimers/MiniLM-L6-H384-uncased
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:730454
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Continuous finite-time control approach for series elastic actuator
sentences:
- >-
Distributed coordination is difficult, especially when the system may
suffer intrusions that corrupt some component processes. We introduce
the abstraction of a failure detector that a process can use to
(imperfectly) detect the corruption (Byzantine failure) of another
process. In general, our failure detectors can be unreliable, both by
reporting a correct process to be faulty or by reporting a faulty
process to be correct. However, we show that if these detectors satisfy
certain plausible properties, then the well known distributed consensus
problem can be solved. We also present a randomized protocol using
failure detectors that solves the consensus problem if either the
requisite properties of failure detectors hold or if certain highly
probable events eventually occur. This work can be viewed as a
generalization of benign failure detectors popular in the distributed
computing literature.
- >-
This paper deals with multilevel partial-response class-IV (PRIV)
transmission over unshielded twisted-pair (UTP) cables. Specifically,
transmission at a rate of 155.52 Mb/s over data-grade UTP cables for
local-area networking is considered. As a low-complexity method used to
compensate for cable-length dependent signal distortion, adaptive analog
equalization with two controlled parameters is proposed: one parameter
determines a frequency-independent receiver gain, the other parameter
controls the transfer characteristic of a variable analog receive-filter
section. For the stepwise design of the transmit and receive filters, a
combination of analytic techniques and simulated annealing is employed.
First, the variable equalizer section, then the remaining fixed analog
receive filter section are developed and finally the analog transmit
filter is determined. The paper also describes the adjustment of the
equalizer section, and the control of the sampling phase in the receiver
front-end. The two equalizer parameters are controlled by an algorithm
that operates on the sampled signals and adjusts these parameters to
optimum settings independently of the sampling phase. The latter is
controlled by a decision-directed phase-locked loop algorithm that
becomes effective when equalization has been achieved. The dynamic
behaviour and mean-square error in steady-state obtained with these
control algorithms are investigated.
- >-
In this paper, a practical control approach is suggested for series
elastic actuators(SEAs) to generate the desired torque. Firstly, based
on the analysis of a nonlinear SEA, the generic dynamics for a class of
SEAs is summarized. Then the dynamic equations are transformed into a
novel state-space form which is convenient for controller design.
Finally, based on the recently developed finite-time control technique,
a finite time disturbance observer and a continuous terminal
sliding-mode control scheme are introduced to synthesize the control
law. The finite-time stability of the proposed controller is
theoretically ensured by Lyapunov analysis. Compared with most existing
methods, the contribution of the paper is two-fold: (i) The proposed
controller is suitable for not only linear, but also a class of
nonlinear SEAs, which means that it is a more generic method for SEA
torque control; (ii) It achieves faster convergence rate and works well
even in the presence of unknown payload parameters and external
disturbances. A series of experiments are carried out on the self-built
SEA testbed to demonstrate the superior performance of the proposed
controller by comparing it with the cascade-PID controller.
- source_sentence: Matrix Methods for Solving Algebraic Systems
sentences:
- >-
We present our public-domain software for the following tasks in sparse
(or toric) elimination theory, given a well-constrained polynomial
system. First, C code for computing the mixed volume of the system.
Second, Maple code for defining an overconstrained system and
constructing a Sylvester-type matrix of its sparse resultant. Third, C
code for a Sylvester-type matrix of the sparse resultant and a superset
of all common roots of the initial well-constrained system by computing
the eigen-decomposition of a square matrix obtained from the resultant
matrix. We conclude with experiments in computing molecular
conformations.
- >-
Design trade-offs between estimation performance, processing delay and
communication cost for a sensor scheduling problem is discussed. We
consider a heterogeneous sensor network with two types of sensors: the
first type has low-quality measurements, small processing delay and a
light communication cost, while the second type is of high quality, but
imposes a large processing delay and a high communication cost. Such a
heterogeneous sensor network is common in applications, where for
instance in a localization system the poor sensor can be an ultrasound
sensor while the more powerful sensor can be a camera. Using a
time-periodic Kalman filter, we show how one can find an optimal
schedule of the sensor communication. One can significantly improve
estimation quality by only using the expensive sensor rarely. We also
demonstrate how simple sensor switching rules based on the Riccati
equation drives the filter into a stable time-periodic Kalman filter.
- >-
The Multi-stage Genetic Algorithm, MGA, is introduced to solve a class
of compositional design problems. The problem with complicated
constraints is formulated as a set of local subproblems with simple
constraints and a supervising problem. Every subproblem is solved by GA
to generate a set of suboptimal solutions. And in the supervising
problem, the elements of each set are optimally combined by GA to yield
the optimal solution for the original problem. The method is a learning
method where the empirical knowledge obtained by solving the problem is
effectively utilized to solve similar problems efficiently. Extended
knapsack problems are solved to demonstrate the proposed method, and the
efficiency of the method is shown. In addition, the method is
successfully applied to optimal realization of cooperative robot soccer
behaviors.
- source_sentence: >-
Low-power partial-parallel Chien search architecture with polynomial
degree reduction
sentences:
- >-
In this paper, we present a novel attentive and immersive user interface
based on gaze and hand gestures for interactive large-scale displays.
The combination of gaze and hand gestures provide more interesting and
immersive ways to manipulate 3D information.
- >-
There is significant interest in the synthesis of discrete-state random
fields, particularly those possessing structure over a wide range of
scales. However, given a model on some finest, pixellated scale, it is
computationally very difficult to synthesize both large- and small-scale
structures, motivating research into hierarchical methods. In this
paper, we propose a frozen-state approach to hierarchical modeling, in
which simulated annealing is performed on each scale, constrained by the
state estimates at the parent scale. This approach leads to significant
advantages in both modeling flexibility and computational complexity. In
particular, a complex structure can be realized with very simple, local,
scale-dependent models, and by constraining the domain to be annealed at
finer scales to only the uncertain portions of coarser scales; the
approach leads to huge improvements in computational complexity. Results
are shown for a synthesis problem in porous media.
- >-
The Chien search for the error locator polynomial root computation in
BCH and Reed-Solomon decoding accounts for a significant part of the
overall decoder power consumption, especially r long codes over finite
fields of high order. For serial Chien search, the power consumption is
substantially lowered by a polynomial degree reduction (PDR) scheme.
Every time a root is found, it is factored out of the error locator
polynomial. Only the hardware units associated with the reduced-degree
polynomial coefficients are active. However, this PDR scheme can not be
directly extended to partial-parallel Chien search, which is needed in
any systems to achieve high throughput. By analyzing the formulas of the
evaluation values over finite field elements and available intermediate
results of the Chien search, this paper proposes a partial-parallel
Chien search architecture that reduces the error locator polynomial
degree on the fly whenever a root is found without using long division.
For a 122-error-correcting BCH code over GF(215), an 8-parallel Chien
search using the proposed architecture achieves 32% power reduction over
existing partial-parallel architectures for a typical case.
- source_sentence: An efficient network-switch scheduling for real-time applications
sentences:
- >-
Bursts consist of a varying number of asynchronous transfer mode cells
corresponding to a datagram. Here, we generalized weighted fair queueing
to a burst-based algorithm with preemption. The new algorithm enhances
the performance of the switch service for real-time applications, and it
preserves the quality of service guarantees. We study this algorithm
theoretically and via simulations.
- >-
Online Social Network (OSN) is one of the hottest innovations in the
past years, and the active users are more than a billion. For OSN,
users' behavior is one of the important factors to study. This
demonstration proposal presents Harbinger, an analyzing and predicting
system for OSN users' behavior. In Harbinger, we focus on tweets'
timestamps (when users post or share messages), visualize users' post
behavior as well as message retweet number and build adjustable models
to predict users' behavior. Predictions of users' behavior can be
performed with the discovered behavior models and the results can be
applied to many applications such as tweet crawler and advertisement.
- >-
The computation and memory required for kernel machines with N training
samples is at least O(N2). Such a complexity is significant even for
moderate size problems and is prohibitive for large datasets. We present
an approximation technique based on the improved fast Gauss transform to
reduce the computation to O(N). We also give an error bound for the
approximation, and provide experimental results on the UCI datasets.
- source_sentence: Summarizing the Evidence on the International Trade in Illegal Wildlife
sentences:
- >-
This paper proposes a method to represent classifiers or learned
regression functions using an OWL ontology. Also proposed are methods
for finding an appropriate learned function to answer a simple query.
The ontology standardizes variable names and dependence properties, so
that feature values can be given by users or found on the semantic web.
- >-
The global trade in illegal wildlife is a multi-billion dollar industry
that threatens biodiversity and acts as a potential avenue for invasive
species and disease spread. Despite the broad-sweeping implications of
illegal wildlife sales, scientists have yet to describe the scope and
scale of the trade. Here, we provide the most thorough and current
description of the illegal wildlife trade using 12 years of seizure
records compiled by TRAFFIC, the wildlife trade monitoring network.
These records comprise 967 seizures including massive quantities of
ivory, tiger skins, live reptiles, and other endangered wildlife and
wildlife products. Most seizures originate in Southeast Asia, a recently
identified hotspot for future emerging infectious diseases. To date,
regulation and enforcement have been insufficient to effectively control
the global trade in illegal wildlife at national and international
scales. Effective control will require a multi-pronged approach
including community-scale education and empowering local people to value
wildlife, coordinated international regulation, and a greater allocation
of national resources to on-the-ground enforcement.
- >-
Griffithsin (GRFT) is a red alga-derived lectin with demonstrated broad
spectrum antiviral activity against enveloped viruses, including severe
acute respiratory syndrome–Coronavirus (SARS-CoV), Japanese encephalitis
virus (JEV), hepatitis C virus (HCV), and herpes simplex virus-2
(HSV-2). However, its pharmacokinetic profile remains largely undefined.
Here, Sprague Dawley rats were administered a single dose of GRFT at 10
or 20 mg/kg by intravenous, oral, and subcutaneous routes, respectively,
and serum GRFT levels were measured at select time points. In addition,
the potential for systemic accumulation after oral dosing was assessed
in rats after 10 daily treatments with GRFT (20 or 40 mg/kg). We found
that parenterally-administered GRFT in rats displayed a complex
elimination profile, which varied according to administration routes.
However, GRFT was not orally bioavailable, even after chronic treatment.
Nonetheless, active GRFT capable of neutralizing HIV-Env pseudoviruses
was detected in rat fecal extracts after chronic oral dosing. These
findings support further evaluation of GRFT for pre-exposure prophylaxis
against emerging epidemics for which specific therapeutics are not
available, including systemic and enteric infections caused by
susceptible enveloped viruses. In addition, GRFT should be considered
for antiviral therapy and the prevention of rectal transmission of HIV-1
and other susceptible viruses.
SentenceTransformer based on nreimers/MiniLM-L6-H384-uncased
This is a sentence-transformers model finetuned from nreimers/MiniLM-L6-H384-uncased. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nreimers/MiniLM-L6-H384-uncased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Summarizing the Evidence on the International Trade in Illegal Wildlife',
'The global trade in illegal wildlife is a multi-billion dollar industry that threatens biodiversity and acts as a potential avenue for invasive species and disease spread. Despite the broad-sweeping implications of illegal wildlife sales, scientists have yet to describe the scope and scale of the trade. Here, we provide the most thorough and current description of the illegal wildlife trade using 12 years of seizure records compiled by TRAFFIC, the wildlife trade monitoring network. These records comprise 967 seizures including massive quantities of ivory, tiger skins, live reptiles, and other endangered wildlife and wildlife products. Most seizures originate in Southeast Asia, a recently identified hotspot for future emerging infectious diseases. To date, regulation and enforcement have been insufficient to effectively control the global trade in illegal wildlife at national and international scales. Effective control will require a multi-pronged approach including community-scale education and empowering local people to value wildlife, coordinated international regulation, and a greater allocation of national resources to on-the-ground enforcement.',
'This paper proposes a method to represent classifiers or learned regression functions using an OWL ontology. Also proposed are methods for finding an appropriate learned function to answer a simple query. The ontology standardizes variable names and dependence properties, so that feature values can be given by users or found on the semantic web.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 730,454 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 5 tokens
- mean: 15.55 tokens
- max: 41 tokens
- min: 21 tokens
- mean: 195.91 tokens
- max: 512 tokens
- Samples:
sentence_0 sentence_1 A parallel algorithm for constructing independent spanning trees in twisted cubes
A long-standing conjecture mentions that a kk-connected graph GG admits kk independent spanning trees (ISTs for short) rooted at an arbitrary node of GG. An nn-dimensional twisted cube, denoted by TQnTQn, is a variation of hypercube with connectivity nn and has many features superior to those of hypercube. Yang (2010) first proposed an algorithm to construct nn edge-disjoint spanning trees in TQnTQn for any odd integer n⩾3n⩾3 and showed that half of them are ISTs. At a later stage, Wang et al. (2012) inferred that the above conjecture in affirmative for TQnTQn by providing an O(NlogN)O(NlogN) time algorithm to construct nn ISTs, where N=2nN=2n is the number of nodes in TQnTQn. However, this algorithm is executed in a recursive fashion and thus is hard to be parallelized. In this paper, we revisit the problem of constructing ISTs in twisted cubes and present a non-recursive algorithm. Our approach can be fully parallelized to make the use of all nodes of TQnTQn as processors for computation in such a way that each node can determine its parent in all spanning trees directly by referring its address and tree indices in O(logN)O(logN) time.
A Novel Method for Separating and Locating Multiple Partial Discharge Sources in a Substation
To separate and locate multi-partial discharge (PD) sources in a substation, the use of spectrum differences of ultra-high frequency signals radiated from various sources as characteristic parameters has been previously reported. However, the separation success rate was poor when signal-to-noise ratio was low, and the localization result was a coordinate on two-dimensional plane. In this paper, a novel method is proposed to improve the separation rate and the localization accuracy. A directional measuring platform is built using two directional antennas. The time delay (TD) of the signals captured by the antennas is calculated, and TD sequences are obtained by rotating the platform at different angles. The sequences are separated with the TD distribution feature, and the directions of the multi-PD sources are calculated. The PD sources are located by directions using the error probability method. To verify the method, a simulated model with three PD sources was established by XFdtd. Simulation results show that the separation rate is increased from 71% to 95% compared with the previous method, and an accurate three-dimensional localization result was obtained. A field test with two PD sources was carried out, and the sources were separated and located accurately by the proposed method.
Every ternary permutation constraint satisfaction problem parameterized above average has a kernel with a quadratic number of variables
A ternary Permutation-CSP is specified by a subset @P of the symmetric group S"3. An instance of such a problem consists of a set of variables V and a multiset of constraints, which are ordered triples of distinct variables of V. The objective is to find a linear ordering @a of V that maximizes the number of triples whose rearrangement (under @a) follows a permutation in @P. We prove that every ternary Permutation-CSP parameterized above average has a kernel with a quadratic number of variables.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
num_train_epochs
: 5multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0055 | 500 | 1.6701 |
0.0110 | 1000 | 0.8225 |
0.0164 | 1500 | 0.3883 |
0.0219 | 2000 | 0.2685 |
0.0274 | 2500 | 0.2349 |
0.0329 | 3000 | 0.1685 |
0.0383 | 3500 | 0.1409 |
0.0438 | 4000 | 0.1262 |
0.0493 | 4500 | 0.1195 |
0.0548 | 5000 | 0.1044 |
0.0602 | 5500 | 0.0989 |
0.0657 | 6000 | 0.0787 |
0.0712 | 6500 | 0.0895 |
0.0767 | 7000 | 0.0708 |
0.0821 | 7500 | 0.0834 |
0.0876 | 8000 | 0.0634 |
0.0931 | 8500 | 0.0643 |
0.0986 | 9000 | 0.0567 |
0.1040 | 9500 | 0.0646 |
0.1095 | 10000 | 0.0607 |
0.1150 | 10500 | 0.0564 |
0.1205 | 11000 | 0.068 |
0.1259 | 11500 | 0.0536 |
0.1314 | 12000 | 0.0594 |
0.1369 | 12500 | 0.057 |
0.1424 | 13000 | 0.0555 |
0.1479 | 13500 | 0.0485 |
0.1533 | 14000 | 0.0528 |
0.1588 | 14500 | 0.0478 |
0.1643 | 15000 | 0.0586 |
0.1698 | 15500 | 0.0539 |
0.1752 | 16000 | 0.0432 |
0.1807 | 16500 | 0.0542 |
0.1862 | 17000 | 0.0536 |
0.1917 | 17500 | 0.0492 |
0.1971 | 18000 | 0.0427 |
0.2026 | 18500 | 0.0489 |
0.2081 | 19000 | 0.0502 |
0.2136 | 19500 | 0.0432 |
0.2190 | 20000 | 0.0459 |
0.2245 | 20500 | 0.0376 |
0.2300 | 21000 | 0.0489 |
0.2355 | 21500 | 0.0515 |
0.2409 | 22000 | 0.0429 |
0.2464 | 22500 | 0.0417 |
0.2519 | 23000 | 0.0478 |
0.2574 | 23500 | 0.0359 |
0.2628 | 24000 | 0.0452 |
0.2683 | 24500 | 0.0443 |
0.2738 | 25000 | 0.0409 |
0.2793 | 25500 | 0.0421 |
0.2848 | 26000 | 0.0393 |
0.2902 | 26500 | 0.0409 |
0.2957 | 27000 | 0.032 |
0.3012 | 27500 | 0.0468 |
0.3067 | 28000 | 0.0285 |
0.3121 | 28500 | 0.0311 |
0.3176 | 29000 | 0.0304 |
0.3231 | 29500 | 0.0349 |
0.3286 | 30000 | 0.0352 |
0.3340 | 30500 | 0.0367 |
0.3395 | 31000 | 0.0385 |
0.3450 | 31500 | 0.0325 |
0.3505 | 32000 | 0.0302 |
0.3559 | 32500 | 0.0393 |
0.3614 | 33000 | 0.032 |
0.3669 | 33500 | 0.0263 |
0.3724 | 34000 | 0.0343 |
0.3778 | 34500 | 0.0349 |
0.3833 | 35000 | 0.0282 |
0.3888 | 35500 | 0.034 |
0.3943 | 36000 | 0.0376 |
0.3998 | 36500 | 0.0265 |
0.4052 | 37000 | 0.0267 |
0.4107 | 37500 | 0.0241 |
0.4162 | 38000 | 0.033 |
0.4217 | 38500 | 0.0323 |
0.4271 | 39000 | 0.0278 |
0.4326 | 39500 | 0.025 |
0.4381 | 40000 | 0.0363 |
0.4436 | 40500 | 0.0312 |
0.4490 | 41000 | 0.0307 |
0.4545 | 41500 | 0.0305 |
0.4600 | 42000 | 0.028 |
0.4655 | 42500 | 0.0279 |
0.4709 | 43000 | 0.0265 |
0.4764 | 43500 | 0.0262 |
0.4819 | 44000 | 0.0308 |
0.4874 | 44500 | 0.0282 |
0.4928 | 45000 | 0.0243 |
0.4983 | 45500 | 0.0236 |
0.5038 | 46000 | 0.02 |
0.5093 | 46500 | 0.0254 |
0.5147 | 47000 | 0.0275 |
0.5202 | 47500 | 0.0309 |
0.5257 | 48000 | 0.031 |
0.5312 | 48500 | 0.0271 |
0.5367 | 49000 | 0.0218 |
0.5421 | 49500 | 0.0249 |
0.5476 | 50000 | 0.0285 |
0.5531 | 50500 | 0.03 |
0.5586 | 51000 | 0.0284 |
0.5640 | 51500 | 0.0258 |
0.5695 | 52000 | 0.0228 |
0.5750 | 52500 | 0.0305 |
0.5805 | 53000 | 0.0234 |
0.5859 | 53500 | 0.0209 |
0.5914 | 54000 | 0.0341 |
0.5969 | 54500 | 0.0269 |
0.6024 | 55000 | 0.0267 |
0.6078 | 55500 | 0.0245 |
0.6133 | 56000 | 0.0263 |
0.6188 | 56500 | 0.0195 |
0.6243 | 57000 | 0.0209 |
0.6297 | 57500 | 0.0313 |
0.6352 | 58000 | 0.0247 |
0.6407 | 58500 | 0.0285 |
0.6462 | 59000 | 0.0301 |
0.6516 | 59500 | 0.0227 |
0.6571 | 60000 | 0.0235 |
0.6626 | 60500 | 0.0272 |
0.6681 | 61000 | 0.025 |
0.6736 | 61500 | 0.0276 |
0.6790 | 62000 | 0.0289 |
0.6845 | 62500 | 0.0232 |
0.6900 | 63000 | 0.0258 |
0.6955 | 63500 | 0.0254 |
0.7009 | 64000 | 0.0205 |
0.7064 | 64500 | 0.0216 |
0.7119 | 65000 | 0.0304 |
0.7174 | 65500 | 0.0234 |
0.7228 | 66000 | 0.0233 |
0.7283 | 66500 | 0.0239 |
0.7338 | 67000 | 0.0166 |
0.7393 | 67500 | 0.0211 |
0.7447 | 68000 | 0.0212 |
0.7502 | 68500 | 0.0247 |
0.7557 | 69000 | 0.023 |
0.7612 | 69500 | 0.0261 |
0.7666 | 70000 | 0.0204 |
0.7721 | 70500 | 0.026 |
0.7776 | 71000 | 0.0299 |
0.7831 | 71500 | 0.0183 |
0.7885 | 72000 | 0.0228 |
0.7940 | 72500 | 0.0181 |
0.7995 | 73000 | 0.0237 |
0.8050 | 73500 | 0.0237 |
0.8105 | 74000 | 0.0158 |
0.8159 | 74500 | 0.0222 |
0.8214 | 75000 | 0.0196 |
0.8269 | 75500 | 0.0242 |
0.8324 | 76000 | 0.0218 |
0.8378 | 76500 | 0.0201 |
0.8433 | 77000 | 0.026 |
0.8488 | 77500 | 0.0232 |
0.8543 | 78000 | 0.0254 |
0.8597 | 78500 | 0.0218 |
0.8652 | 79000 | 0.0219 |
0.8707 | 79500 | 0.0255 |
0.8762 | 80000 | 0.0201 |
0.8816 | 80500 | 0.0301 |
0.8871 | 81000 | 0.0275 |
0.8926 | 81500 | 0.018 |
0.8981 | 82000 | 0.028 |
0.9035 | 82500 | 0.0223 |
0.9090 | 83000 | 0.0201 |
0.9145 | 83500 | 0.0299 |
0.9200 | 84000 | 0.0251 |
0.9254 | 84500 | 0.0203 |
0.9309 | 85000 | 0.0209 |
0.9364 | 85500 | 0.0236 |
0.9419 | 86000 | 0.0191 |
0.9474 | 86500 | 0.0168 |
0.9528 | 87000 | 0.017 |
0.9583 | 87500 | 0.0201 |
0.9638 | 88000 | 0.0171 |
0.9693 | 88500 | 0.0217 |
0.9747 | 89000 | 0.0208 |
0.9802 | 89500 | 0.0157 |
0.9857 | 90000 | 0.0218 |
0.9912 | 90500 | 0.021 |
0.9966 | 91000 | 0.0159 |
1.0021 | 91500 | 0.0189 |
1.0076 | 92000 | 0.0182 |
1.0131 | 92500 | 0.0206 |
1.0185 | 93000 | 0.0179 |
1.0240 | 93500 | 0.0168 |
1.0295 | 94000 | 0.019 |
1.0350 | 94500 | 0.0173 |
1.0404 | 95000 | 0.0172 |
1.0459 | 95500 | 0.0187 |
1.0514 | 96000 | 0.0199 |
1.0569 | 96500 | 0.0202 |
1.0624 | 97000 | 0.0198 |
1.0678 | 97500 | 0.0157 |
1.0733 | 98000 | 0.0178 |
1.0788 | 98500 | 0.0147 |
1.0843 | 99000 | 0.0152 |
1.0897 | 99500 | 0.0152 |
1.0952 | 100000 | 0.0126 |
1.1007 | 100500 | 0.0115 |
1.1062 | 101000 | 0.0122 |
1.1116 | 101500 | 0.0097 |
1.1171 | 102000 | 0.0149 |
1.1226 | 102500 | 0.0151 |
1.1281 | 103000 | 0.0134 |
1.1335 | 103500 | 0.0157 |
1.1390 | 104000 | 0.0141 |
1.1445 | 104500 | 0.0139 |
1.1500 | 105000 | 0.0149 |
1.1554 | 105500 | 0.0103 |
1.1609 | 106000 | 0.0138 |
1.1664 | 106500 | 0.0116 |
1.1719 | 107000 | 0.0146 |
1.1773 | 107500 | 0.0168 |
1.1828 | 108000 | 0.0166 |
1.1883 | 108500 | 0.0136 |
1.1938 | 109000 | 0.0103 |
1.1993 | 109500 | 0.0128 |
1.2047 | 110000 | 0.0112 |
1.2102 | 110500 | 0.0103 |
1.2157 | 111000 | 0.0133 |
1.2212 | 111500 | 0.0118 |
1.2266 | 112000 | 0.009 |
1.2321 | 112500 | 0.0151 |
1.2376 | 113000 | 0.0146 |
1.2431 | 113500 | 0.0143 |
1.2485 | 114000 | 0.01 |
1.2540 | 114500 | 0.0147 |
1.2595 | 115000 | 0.011 |
1.2650 | 115500 | 0.0121 |
1.2704 | 116000 | 0.0117 |
1.2759 | 116500 | 0.0151 |
1.2814 | 117000 | 0.0143 |
1.2869 | 117500 | 0.0163 |
1.2923 | 118000 | 0.0135 |
1.2978 | 118500 | 0.0118 |
1.3033 | 119000 | 0.0129 |
1.3088 | 119500 | 0.0062 |
1.3142 | 120000 | 0.0127 |
1.3197 | 120500 | 0.014 |
1.3252 | 121000 | 0.0131 |
1.3307 | 121500 | 0.0162 |
1.3362 | 122000 | 0.0107 |
1.3416 | 122500 | 0.0125 |
1.3471 | 123000 | 0.0136 |
1.3526 | 123500 | 0.0112 |
1.3581 | 124000 | 0.0126 |
1.3635 | 124500 | 0.0079 |
1.3690 | 125000 | 0.0104 |
1.3745 | 125500 | 0.0137 |
1.3800 | 126000 | 0.0075 |
1.3854 | 126500 | 0.0108 |
1.3909 | 127000 | 0.0087 |
1.3964 | 127500 | 0.0138 |
1.4019 | 128000 | 0.0056 |
1.4073 | 128500 | 0.0067 |
1.4128 | 129000 | 0.0103 |
1.4183 | 129500 | 0.0102 |
1.4238 | 130000 | 0.0119 |
1.4292 | 130500 | 0.0094 |
1.4347 | 131000 | 0.0075 |
1.4402 | 131500 | 0.0146 |
1.4457 | 132000 | 0.0103 |
1.4511 | 132500 | 0.0123 |
1.4566 | 133000 | 0.0107 |
1.4621 | 133500 | 0.0071 |
1.4676 | 134000 | 0.0087 |
1.4731 | 134500 | 0.0072 |
1.4785 | 135000 | 0.0094 |
1.4840 | 135500 | 0.0083 |
1.4895 | 136000 | 0.0104 |
1.4950 | 136500 | 0.0076 |
1.5004 | 137000 | 0.006 |
1.5059 | 137500 | 0.0085 |
1.5114 | 138000 | 0.0061 |
1.5169 | 138500 | 0.0106 |
1.5223 | 139000 | 0.0088 |
1.5278 | 139500 | 0.0111 |
1.5333 | 140000 | 0.0094 |
1.5388 | 140500 | 0.0079 |
1.5442 | 141000 | 0.0095 |
1.5497 | 141500 | 0.0098 |
1.5552 | 142000 | 0.0139 |
1.5607 | 142500 | 0.0085 |
1.5661 | 143000 | 0.0094 |
1.5716 | 143500 | 0.0088 |
1.5771 | 144000 | 0.0092 |
1.5826 | 144500 | 0.0071 |
1.5880 | 145000 | 0.0101 |
1.5935 | 145500 | 0.011 |
1.5990 | 146000 | 0.0097 |
1.6045 | 146500 | 0.0071 |
1.6100 | 147000 | 0.0114 |
1.6154 | 147500 | 0.0087 |
1.6209 | 148000 | 0.0075 |
1.6264 | 148500 | 0.0039 |
1.6319 | 149000 | 0.0091 |
1.6373 | 149500 | 0.0117 |
1.6428 | 150000 | 0.01 |
1.6483 | 150500 | 0.0099 |
1.6538 | 151000 | 0.0069 |
1.6592 | 151500 | 0.0084 |
1.6647 | 152000 | 0.0118 |
1.6702 | 152500 | 0.0078 |
1.6757 | 153000 | 0.0067 |
1.6811 | 153500 | 0.0133 |
1.6866 | 154000 | 0.0079 |
1.6921 | 154500 | 0.0092 |
1.6976 | 155000 | 0.0069 |
1.7030 | 155500 | 0.008 |
1.7085 | 156000 | 0.0124 |
1.7140 | 156500 | 0.0112 |
1.7195 | 157000 | 0.0074 |
1.7249 | 157500 | 0.0091 |
1.7304 | 158000 | 0.0088 |
1.7359 | 158500 | 0.0061 |
1.7414 | 159000 | 0.0089 |
1.7469 | 159500 | 0.0082 |
1.7523 | 160000 | 0.0103 |
1.7578 | 160500 | 0.0094 |
1.7633 | 161000 | 0.0073 |
1.7688 | 161500 | 0.0116 |
1.7742 | 162000 | 0.0112 |
1.7797 | 162500 | 0.0057 |
1.7852 | 163000 | 0.0075 |
1.7907 | 163500 | 0.0062 |
1.7961 | 164000 | 0.0046 |
1.8016 | 164500 | 0.0091 |
1.8071 | 165000 | 0.0066 |
1.8126 | 165500 | 0.0051 |
1.8180 | 166000 | 0.0066 |
1.8235 | 166500 | 0.0093 |
1.8290 | 167000 | 0.0079 |
1.8345 | 167500 | 0.0067 |
1.8399 | 168000 | 0.007 |
1.8454 | 168500 | 0.0133 |
1.8509 | 169000 | 0.0071 |
1.8564 | 169500 | 0.0091 |
1.8619 | 170000 | 0.0067 |
1.8673 | 170500 | 0.0091 |
1.8728 | 171000 | 0.0103 |
1.8783 | 171500 | 0.0058 |
1.8838 | 172000 | 0.0116 |
1.8892 | 172500 | 0.0089 |
1.8947 | 173000 | 0.0137 |
1.9002 | 173500 | 0.0065 |
1.9057 | 174000 | 0.0098 |
1.9111 | 174500 | 0.0083 |
1.9166 | 175000 | 0.0115 |
1.9221 | 175500 | 0.0083 |
1.9276 | 176000 | 0.0084 |
1.9330 | 176500 | 0.0091 |
1.9385 | 177000 | 0.0092 |
1.9440 | 177500 | 0.0054 |
1.9495 | 178000 | 0.0049 |
1.9549 | 178500 | 0.0072 |
1.9604 | 179000 | 0.0052 |
1.9659 | 179500 | 0.0063 |
1.9714 | 180000 | 0.0107 |
1.9768 | 180500 | 0.0061 |
1.9823 | 181000 | 0.0059 |
1.9878 | 181500 | 0.0067 |
1.9933 | 182000 | 0.0078 |
1.9988 | 182500 | 0.007 |
2.0042 | 183000 | 0.0065 |
2.0097 | 183500 | 0.0073 |
2.0152 | 184000 | 0.01 |
2.0207 | 184500 | 0.0072 |
2.0261 | 185000 | 0.0055 |
2.0316 | 185500 | 0.0087 |
2.0371 | 186000 | 0.0077 |
2.0426 | 186500 | 0.0067 |
2.0480 | 187000 | 0.008 |
2.0535 | 187500 | 0.0074 |
2.0590 | 188000 | 0.0072 |
2.0645 | 188500 | 0.0045 |
2.0699 | 189000 | 0.0082 |
2.0754 | 189500 | 0.0042 |
2.0809 | 190000 | 0.0076 |
2.0864 | 190500 | 0.0058 |
2.0918 | 191000 | 0.005 |
2.0973 | 191500 | 0.0047 |
2.1028 | 192000 | 0.0045 |
2.1083 | 192500 | 0.0043 |
2.1137 | 193000 | 0.0049 |
2.1192 | 193500 | 0.0058 |
2.1247 | 194000 | 0.0081 |
2.1302 | 194500 | 0.0057 |
2.1357 | 195000 | 0.0047 |
2.1411 | 195500 | 0.0073 |
2.1466 | 196000 | 0.0056 |
2.1521 | 196500 | 0.006 |
2.1576 | 197000 | 0.0061 |
2.1630 | 197500 | 0.0042 |
2.1685 | 198000 | 0.0057 |
2.1740 | 198500 | 0.0055 |
2.1795 | 199000 | 0.0053 |
2.1849 | 199500 | 0.0085 |
2.1904 | 200000 | 0.005 |
2.1959 | 200500 | 0.0055 |
2.2014 | 201000 | 0.0032 |
2.2068 | 201500 | 0.0054 |
2.2123 | 202000 | 0.0037 |
2.2178 | 202500 | 0.0046 |
2.2233 | 203000 | 0.0029 |
2.2287 | 203500 | 0.0043 |
2.2342 | 204000 | 0.0063 |
2.2397 | 204500 | 0.0064 |
2.2452 | 205000 | 0.0046 |
2.2506 | 205500 | 0.0061 |
2.2561 | 206000 | 0.0034 |
2.2616 | 206500 | 0.0046 |
2.2671 | 207000 | 0.0059 |
2.2726 | 207500 | 0.0044 |
2.2780 | 208000 | 0.0054 |
2.2835 | 208500 | 0.0049 |
2.2890 | 209000 | 0.0096 |
2.2945 | 209500 | 0.0045 |
2.2999 | 210000 | 0.0057 |
2.3054 | 210500 | 0.0032 |
2.3109 | 211000 | 0.0031 |
2.3164 | 211500 | 0.0043 |
2.3218 | 212000 | 0.0068 |
2.3273 | 212500 | 0.0048 |
2.3328 | 213000 | 0.0042 |
2.3383 | 213500 | 0.0068 |
2.3437 | 214000 | 0.0041 |
2.3492 | 214500 | 0.0042 |
2.3547 | 215000 | 0.0051 |
2.3602 | 215500 | 0.0049 |
2.3656 | 216000 | 0.0019 |
2.3711 | 216500 | 0.0039 |
2.3766 | 217000 | 0.0068 |
2.3821 | 217500 | 0.0033 |
2.3875 | 218000 | 0.0048 |
2.3930 | 218500 | 0.0052 |
2.3985 | 219000 | 0.0063 |
2.4040 | 219500 | 0.003 |
2.4095 | 220000 | 0.0036 |
2.4149 | 220500 | 0.004 |
2.4204 | 221000 | 0.006 |
2.4259 | 221500 | 0.0048 |
2.4314 | 222000 | 0.0037 |
2.4368 | 222500 | 0.0034 |
2.4423 | 223000 | 0.0049 |
2.4478 | 223500 | 0.0036 |
2.4533 | 224000 | 0.0046 |
2.4587 | 224500 | 0.0039 |
2.4642 | 225000 | 0.0021 |
2.4697 | 225500 | 0.0035 |
2.4752 | 226000 | 0.0034 |
2.4806 | 226500 | 0.003 |
2.4861 | 227000 | 0.0032 |
2.4916 | 227500 | 0.005 |
2.4971 | 228000 | 0.0025 |
2.5025 | 228500 | 0.0036 |
2.5080 | 229000 | 0.0021 |
2.5135 | 229500 | 0.0025 |
2.5190 | 230000 | 0.0036 |
2.5245 | 230500 | 0.0033 |
2.5299 | 231000 | 0.0049 |
2.5354 | 231500 | 0.0044 |
2.5409 | 232000 | 0.0029 |
2.5464 | 232500 | 0.0028 |
2.5518 | 233000 | 0.0091 |
2.5573 | 233500 | 0.004 |
2.5628 | 234000 | 0.0036 |
2.5683 | 234500 | 0.0029 |
2.5737 | 235000 | 0.0035 |
2.5792 | 235500 | 0.0038 |
2.5847 | 236000 | 0.0028 |
2.5902 | 236500 | 0.0041 |
2.5956 | 237000 | 0.0037 |
2.6011 | 237500 | 0.0031 |
2.6066 | 238000 | 0.0036 |
2.6121 | 238500 | 0.0052 |
2.6175 | 239000 | 0.0031 |
2.6230 | 239500 | 0.0023 |
2.6285 | 240000 | 0.0043 |
2.6340 | 240500 | 0.0027 |
2.6394 | 241000 | 0.0048 |
2.6449 | 241500 | 0.0046 |
2.6504 | 242000 | 0.0038 |
2.6559 | 242500 | 0.0033 |
2.6614 | 243000 | 0.003 |
2.6668 | 243500 | 0.0057 |
2.6723 | 244000 | 0.0044 |
2.6778 | 244500 | 0.0058 |
2.6833 | 245000 | 0.003 |
2.6887 | 245500 | 0.0042 |
2.6942 | 246000 | 0.0045 |
2.6997 | 246500 | 0.0031 |
2.7052 | 247000 | 0.0021 |
2.7106 | 247500 | 0.0043 |
2.7161 | 248000 | 0.0058 |
2.7216 | 248500 | 0.0041 |
2.7271 | 249000 | 0.0038 |
2.7325 | 249500 | 0.0019 |
2.7380 | 250000 | 0.0029 |
2.7435 | 250500 | 0.003 |
2.7490 | 251000 | 0.0038 |
2.7544 | 251500 | 0.004 |
2.7599 | 252000 | 0.0049 |
2.7654 | 252500 | 0.0039 |
2.7709 | 253000 | 0.005 |
2.7763 | 253500 | 0.0046 |
2.7818 | 254000 | 0.0025 |
2.7873 | 254500 | 0.0044 |
2.7928 | 255000 | 0.0023 |
2.7983 | 255500 | 0.0038 |
2.8037 | 256000 | 0.0032 |
2.8092 | 256500 | 0.0021 |
2.8147 | 257000 | 0.0023 |
2.8202 | 257500 | 0.0042 |
2.8256 | 258000 | 0.0042 |
2.8311 | 258500 | 0.0053 |
2.8366 | 259000 | 0.0021 |
2.8421 | 259500 | 0.0033 |
2.8475 | 260000 | 0.0047 |
2.8530 | 260500 | 0.0048 |
2.8585 | 261000 | 0.0022 |
2.8640 | 261500 | 0.0036 |
2.8694 | 262000 | 0.0034 |
2.8749 | 262500 | 0.0029 |
2.8804 | 263000 | 0.0038 |
2.8859 | 263500 | 0.0067 |
2.8913 | 264000 | 0.003 |
2.8968 | 264500 | 0.0049 |
2.9023 | 265000 | 0.0027 |
2.9078 | 265500 | 0.004 |
2.9132 | 266000 | 0.0042 |
2.9187 | 266500 | 0.0042 |
2.9242 | 267000 | 0.0038 |
2.9297 | 267500 | 0.0029 |
2.9352 | 268000 | 0.0039 |
2.9406 | 268500 | 0.0039 |
2.9461 | 269000 | 0.002 |
2.9516 | 269500 | 0.0022 |
2.9571 | 270000 | 0.002 |
2.9625 | 270500 | 0.003 |
2.9680 | 271000 | 0.0019 |
2.9735 | 271500 | 0.0044 |
2.9790 | 272000 | 0.0028 |
2.9844 | 272500 | 0.0031 |
2.9899 | 273000 | 0.0025 |
2.9954 | 273500 | 0.0021 |
3.0009 | 274000 | 0.0025 |
3.0063 | 274500 | 0.0038 |
3.0118 | 275000 | 0.0045 |
3.0173 | 275500 | 0.002 |
3.0228 | 276000 | 0.0035 |
3.0282 | 276500 | 0.0046 |
3.0337 | 277000 | 0.0033 |
3.0392 | 277500 | 0.002 |
3.0447 | 278000 | 0.0036 |
3.0501 | 278500 | 0.0025 |
3.0556 | 279000 | 0.0039 |
3.0611 | 279500 | 0.0029 |
3.0666 | 280000 | 0.004 |
3.0721 | 280500 | 0.0023 |
3.0775 | 281000 | 0.0019 |
3.0830 | 281500 | 0.0019 |
3.0885 | 282000 | 0.0027 |
3.0940 | 282500 | 0.0014 |
3.0994 | 283000 | 0.0019 |
3.1049 | 283500 | 0.0018 |
3.1104 | 284000 | 0.0016 |
3.1159 | 284500 | 0.0017 |
3.1213 | 285000 | 0.0049 |
3.1268 | 285500 | 0.0022 |
3.1323 | 286000 | 0.0023 |
3.1378 | 286500 | 0.0016 |
3.1432 | 287000 | 0.002 |
3.1487 | 287500 | 0.0025 |
3.1542 | 288000 | 0.0012 |
3.1597 | 288500 | 0.0021 |
3.1651 | 289000 | 0.0017 |
3.1706 | 289500 | 0.0019 |
3.1761 | 290000 | 0.0019 |
3.1816 | 290500 | 0.0042 |
3.1871 | 291000 | 0.0027 |
3.1925 | 291500 | 0.0011 |
3.1980 | 292000 | 0.002 |
3.2035 | 292500 | 0.0021 |
3.2090 | 293000 | 0.0015 |
3.2144 | 293500 | 0.0017 |
3.2199 | 294000 | 0.002 |
3.2254 | 294500 | 0.0012 |
3.2309 | 295000 | 0.0017 |
3.2363 | 295500 | 0.0029 |
3.2418 | 296000 | 0.0019 |
3.2473 | 296500 | 0.0017 |
3.2528 | 297000 | 0.0019 |
3.2582 | 297500 | 0.0012 |
3.2637 | 298000 | 0.0024 |
3.2692 | 298500 | 0.0017 |
3.2747 | 299000 | 0.0022 |
3.2801 | 299500 | 0.002 |
3.2856 | 300000 | 0.0028 |
3.2911 | 300500 | 0.0036 |
3.2966 | 301000 | 0.0015 |
3.3020 | 301500 | 0.0024 |
3.3075 | 302000 | 0.0015 |
3.3130 | 302500 | 0.0012 |
3.3185 | 303000 | 0.0022 |
3.3240 | 303500 | 0.0015 |
3.3294 | 304000 | 0.0023 |
3.3349 | 304500 | 0.0017 |
3.3404 | 305000 | 0.0021 |
3.3459 | 305500 | 0.0017 |
3.3513 | 306000 | 0.0015 |
3.3568 | 306500 | 0.0023 |
3.3623 | 307000 | 0.0014 |
3.3678 | 307500 | 0.0019 |
3.3732 | 308000 | 0.0017 |
3.3787 | 308500 | 0.0027 |
3.3842 | 309000 | 0.0016 |
3.3897 | 309500 | 0.0019 |
3.3951 | 310000 | 0.0037 |
3.4006 | 310500 | 0.0016 |
3.4061 | 311000 | 0.0012 |
3.4116 | 311500 | 0.0024 |
3.4170 | 312000 | 0.0016 |
3.4225 | 312500 | 0.0022 |
3.4280 | 313000 | 0.0015 |
3.4335 | 313500 | 0.0017 |
3.4389 | 314000 | 0.0015 |
3.4444 | 314500 | 0.0018 |
3.4499 | 315000 | 0.0015 |
3.4554 | 315500 | 0.0019 |
3.4609 | 316000 | 0.0009 |
3.4663 | 316500 | 0.001 |
3.4718 | 317000 | 0.001 |
3.4773 | 317500 | 0.0023 |
3.4828 | 318000 | 0.0012 |
3.4882 | 318500 | 0.0012 |
3.4937 | 319000 | 0.0011 |
3.4992 | 319500 | 0.0008 |
3.5047 | 320000 | 0.0018 |
3.5101 | 320500 | 0.0009 |
3.5156 | 321000 | 0.0016 |
3.5211 | 321500 | 0.0012 |
3.5266 | 322000 | 0.0015 |
3.5320 | 322500 | 0.0024 |
3.5375 | 323000 | 0.0016 |
3.5430 | 323500 | 0.0014 |
3.5485 | 324000 | 0.0014 |
3.5539 | 324500 | 0.0047 |
3.5594 | 325000 | 0.0013 |
3.5649 | 325500 | 0.0012 |
3.5704 | 326000 | 0.0013 |
3.5758 | 326500 | 0.0011 |
3.5813 | 327000 | 0.0011 |
3.5868 | 327500 | 0.0016 |
3.5923 | 328000 | 0.0022 |
3.5978 | 328500 | 0.0017 |
3.6032 | 329000 | 0.0012 |
3.6087 | 329500 | 0.002 |
3.6142 | 330000 | 0.0016 |
3.6197 | 330500 | 0.0009 |
3.6251 | 331000 | 0.0011 |
3.6306 | 331500 | 0.0019 |
3.6361 | 332000 | 0.0011 |
3.6416 | 332500 | 0.0021 |
3.6470 | 333000 | 0.0029 |
3.6525 | 333500 | 0.001 |
3.6580 | 334000 | 0.0016 |
3.6635 | 334500 | 0.0016 |
3.6689 | 335000 | 0.0036 |
3.6744 | 335500 | 0.0012 |
3.6799 | 336000 | 0.003 |
3.6854 | 336500 | 0.0014 |
3.6908 | 337000 | 0.0018 |
3.6963 | 337500 | 0.001 |
3.7018 | 338000 | 0.001 |
3.7073 | 338500 | 0.0016 |
3.7127 | 339000 | 0.0025 |
3.7182 | 339500 | 0.001 |
3.7237 | 340000 | 0.0018 |
3.7292 | 340500 | 0.0015 |
3.7347 | 341000 | 0.001 |
3.7401 | 341500 | 0.0009 |
3.7456 | 342000 | 0.0013 |
3.7511 | 342500 | 0.0014 |
3.7566 | 343000 | 0.0013 |
3.7620 | 343500 | 0.0011 |
3.7675 | 344000 | 0.0026 |
3.7730 | 344500 | 0.0014 |
3.7785 | 345000 | 0.0021 |
3.7839 | 345500 | 0.0015 |
3.7894 | 346000 | 0.0013 |
3.7949 | 346500 | 0.0013 |
3.8004 | 347000 | 0.0019 |
3.8058 | 347500 | 0.0009 |
3.8113 | 348000 | 0.0009 |
3.8168 | 348500 | 0.0014 |
3.8223 | 349000 | 0.0012 |
3.8277 | 349500 | 0.0032 |
3.8332 | 350000 | 0.0015 |
3.8387 | 350500 | 0.0011 |
3.8442 | 351000 | 0.002 |
3.8497 | 351500 | 0.0012 |
3.8551 | 352000 | 0.0026 |
3.8606 | 352500 | 0.001 |
3.8661 | 353000 | 0.0018 |
3.8716 | 353500 | 0.0014 |
3.8770 | 354000 | 0.001 |
3.8825 | 354500 | 0.0018 |
3.8880 | 355000 | 0.0027 |
3.8935 | 355500 | 0.0027 |
3.8989 | 356000 | 0.0011 |
3.9044 | 356500 | 0.0024 |
3.9099 | 357000 | 0.0012 |
3.9154 | 357500 | 0.0018 |
3.9208 | 358000 | 0.0012 |
3.9263 | 358500 | 0.0015 |
3.9318 | 359000 | 0.0015 |
3.9373 | 359500 | 0.0018 |
3.9427 | 360000 | 0.0017 |
3.9482 | 360500 | 0.0009 |
3.9537 | 361000 | 0.001 |
3.9592 | 361500 | 0.0013 |
3.9646 | 362000 | 0.0008 |
3.9701 | 362500 | 0.0018 |
3.9756 | 363000 | 0.0027 |
3.9811 | 363500 | 0.0009 |
3.9866 | 364000 | 0.0008 |
3.9920 | 364500 | 0.001 |
3.9975 | 365000 | 0.0009 |
4.0030 | 365500 | 0.0012 |
4.0085 | 366000 | 0.0011 |
4.0139 | 366500 | 0.0023 |
4.0194 | 367000 | 0.0023 |
4.0249 | 367500 | 0.0012 |
4.0304 | 368000 | 0.0018 |
4.0358 | 368500 | 0.0013 |
4.0413 | 369000 | 0.0009 |
4.0468 | 369500 | 0.0016 |
4.0523 | 370000 | 0.0011 |
4.0577 | 370500 | 0.0011 |
4.0632 | 371000 | 0.0009 |
4.0687 | 371500 | 0.0012 |
4.0742 | 372000 | 0.0011 |
4.0796 | 372500 | 0.0008 |
4.0851 | 373000 | 0.001 |
4.0906 | 373500 | 0.0008 |
4.0961 | 374000 | 0.0009 |
4.1015 | 374500 | 0.0008 |
4.1070 | 375000 | 0.0008 |
4.1125 | 375500 | 0.0008 |
4.1180 | 376000 | 0.0009 |
4.1235 | 376500 | 0.0021 |
4.1289 | 377000 | 0.0007 |
4.1344 | 377500 | 0.0014 |
4.1399 | 378000 | 0.0008 |
4.1454 | 378500 | 0.0015 |
4.1508 | 379000 | 0.0008 |
4.1563 | 379500 | 0.0008 |
4.1618 | 380000 | 0.0015 |
4.1673 | 380500 | 0.0008 |
4.1727 | 381000 | 0.0009 |
4.1782 | 381500 | 0.0018 |
4.1837 | 382000 | 0.0013 |
4.1892 | 382500 | 0.0012 |
4.1946 | 383000 | 0.0008 |
4.2001 | 383500 | 0.0008 |
4.2056 | 384000 | 0.0008 |
4.2111 | 384500 | 0.0008 |
4.2165 | 385000 | 0.001 |
4.2220 | 385500 | 0.0008 |
4.2275 | 386000 | 0.0008 |
4.2330 | 386500 | 0.0009 |
4.2384 | 387000 | 0.0008 |
4.2439 | 387500 | 0.0008 |
4.2494 | 388000 | 0.0011 |
4.2549 | 388500 | 0.0009 |
4.2604 | 389000 | 0.0007 |
4.2658 | 389500 | 0.001 |
4.2713 | 390000 | 0.0007 |
4.2768 | 390500 | 0.0011 |
4.2823 | 391000 | 0.0007 |
4.2877 | 391500 | 0.0019 |
4.2932 | 392000 | 0.0009 |
4.2987 | 392500 | 0.0011 |
4.3042 | 393000 | 0.0008 |
4.3096 | 393500 | 0.0006 |
4.3151 | 394000 | 0.0009 |
4.3206 | 394500 | 0.001 |
4.3261 | 395000 | 0.0007 |
4.3315 | 395500 | 0.0011 |
4.3370 | 396000 | 0.0008 |
4.3425 | 396500 | 0.0007 |
4.3480 | 397000 | 0.0007 |
4.3534 | 397500 | 0.0007 |
4.3589 | 398000 | 0.001 |
4.3644 | 398500 | 0.0008 |
4.3699 | 399000 | 0.001 |
4.3753 | 399500 | 0.0014 |
4.3808 | 400000 | 0.0006 |
4.3863 | 400500 | 0.0006 |
4.3918 | 401000 | 0.001 |
4.3973 | 401500 | 0.002 |
4.4027 | 402000 | 0.0006 |
4.4082 | 402500 | 0.0007 |
4.4137 | 403000 | 0.001 |
4.4192 | 403500 | 0.0008 |
4.4246 | 404000 | 0.0008 |
4.4301 | 404500 | 0.0009 |
4.4356 | 405000 | 0.0005 |
4.4411 | 405500 | 0.0008 |
4.4465 | 406000 | 0.0008 |
4.4520 | 406500 | 0.0007 |
4.4575 | 407000 | 0.0006 |
4.4630 | 407500 | 0.0006 |
4.4684 | 408000 | 0.0006 |
4.4739 | 408500 | 0.0006 |
4.4794 | 409000 | 0.0009 |
4.4849 | 409500 | 0.0007 |
4.4903 | 410000 | 0.0009 |
4.4958 | 410500 | 0.0006 |
4.5013 | 411000 | 0.0007 |
4.5068 | 411500 | 0.0006 |
4.5122 | 412000 | 0.0007 |
4.5177 | 412500 | 0.0006 |
4.5232 | 413000 | 0.0008 |
4.5287 | 413500 | 0.0007 |
4.5342 | 414000 | 0.0013 |
4.5396 | 414500 | 0.0006 |
4.5451 | 415000 | 0.0009 |
4.5506 | 415500 | 0.0015 |
4.5561 | 416000 | 0.0014 |
4.5615 | 416500 | 0.0007 |
4.5670 | 417000 | 0.0007 |
4.5725 | 417500 | 0.0008 |
4.5780 | 418000 | 0.0008 |
4.5834 | 418500 | 0.0007 |
4.5889 | 419000 | 0.0006 |
4.5944 | 419500 | 0.0008 |
4.5999 | 420000 | 0.0008 |
4.6053 | 420500 | 0.0006 |
4.6108 | 421000 | 0.001 |
4.6163 | 421500 | 0.0005 |
4.6218 | 422000 | 0.0007 |
4.6272 | 422500 | 0.0006 |
4.6327 | 423000 | 0.0007 |
4.6382 | 423500 | 0.0009 |
4.6437 | 424000 | 0.0014 |
4.6492 | 424500 | 0.0008 |
4.6546 | 425000 | 0.0006 |
4.6601 | 425500 | 0.0006 |
4.6656 | 426000 | 0.0016 |
4.6711 | 426500 | 0.0006 |
4.6765 | 427000 | 0.0006 |
4.6820 | 427500 | 0.0012 |
4.6875 | 428000 | 0.0007 |
4.6930 | 428500 | 0.0009 |
4.6984 | 429000 | 0.0006 |
4.7039 | 429500 | 0.0005 |
4.7094 | 430000 | 0.0007 |
4.7149 | 430500 | 0.0007 |
4.7203 | 431000 | 0.0006 |
4.7258 | 431500 | 0.0006 |
4.7313 | 432000 | 0.0006 |
4.7368 | 432500 | 0.0006 |
4.7422 | 433000 | 0.0006 |
4.7477 | 433500 | 0.0006 |
4.7532 | 434000 | 0.0006 |
4.7587 | 434500 | 0.0006 |
4.7641 | 435000 | 0.0006 |
4.7696 | 435500 | 0.0018 |
4.7751 | 436000 | 0.0009 |
4.7806 | 436500 | 0.0007 |
4.7861 | 437000 | 0.0007 |
4.7915 | 437500 | 0.0005 |
4.7970 | 438000 | 0.0009 |
4.8025 | 438500 | 0.0013 |
4.8080 | 439000 | 0.0007 |
4.8134 | 439500 | 0.0006 |
4.8189 | 440000 | 0.0007 |
4.8244 | 440500 | 0.001 |
4.8299 | 441000 | 0.0019 |
4.8353 | 441500 | 0.0006 |
4.8408 | 442000 | 0.0006 |
4.8463 | 442500 | 0.0009 |
4.8518 | 443000 | 0.0006 |
4.8572 | 443500 | 0.001 |
4.8627 | 444000 | 0.0011 |
4.8682 | 444500 | 0.0007 |
4.8737 | 445000 | 0.0007 |
4.8791 | 445500 | 0.0007 |
4.8846 | 446000 | 0.0018 |
4.8901 | 446500 | 0.0007 |
4.8956 | 447000 | 0.0012 |
4.9010 | 447500 | 0.0007 |
4.9065 | 448000 | 0.0009 |
4.9120 | 448500 | 0.0007 |
4.9175 | 449000 | 0.001 |
4.9230 | 449500 | 0.0007 |
4.9284 | 450000 | 0.0007 |
4.9339 | 450500 | 0.0007 |
4.9394 | 451000 | 0.0011 |
4.9449 | 451500 | 0.0005 |
4.9503 | 452000 | 0.0007 |
4.9558 | 452500 | 0.0006 |
4.9613 | 453000 | 0.0009 |
4.9668 | 453500 | 0.0008 |
4.9722 | 454000 | 0.0015 |
4.9777 | 454500 | 0.0008 |
4.9832 | 455000 | 0.0006 |
4.9887 | 455500 | 0.0006 |
4.9941 | 456000 | 0.0007 |
4.9996 | 456500 | 0.0006 |
Framework Versions
- Python: 3.12.2
- Sentence Transformers: 3.0.1
- Transformers: 4.42.3
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}