File size: 67,034 Bytes
e5c2bef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
---

base_model: nreimers/MiniLM-L6-H384-uncased
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:730454
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Continuous finite-time control approach for series elastic actuator
  sentences:
  - Distributed coordination is difficult, especially when the system may suffer intrusions
    that corrupt some component processes. We introduce the abstraction of a failure
    detector that a process can use to (imperfectly) detect the corruption (Byzantine
    failure) of another process. In general, our failure detectors can be unreliable,
    both by reporting a correct process to be faulty or by reporting a faulty process
    to be correct. However, we show that if these detectors satisfy certain plausible
    properties, then the well known distributed consensus problem can be solved. We
    also present a randomized protocol using failure detectors that solves the consensus
    problem if either the requisite properties of failure detectors hold or if certain
    highly probable events eventually occur. This work can be viewed as a generalization
    of benign failure detectors popular in the distributed computing literature.
  - 'This paper deals with multilevel partial-response class-IV (PRIV) transmission

    over unshielded twisted-pair (UTP) cables. Specifically, transmission at a rate

    of 155.52 Mb/s over data-grade UTP cables for local-area networking is considered.

    As a low-complexity method used to compensate for cable-length dependent signal

    distortion, adaptive analog equalization with two controlled parameters is proposed:

    one parameter determines a frequency-independent receiver gain, the other parameter

    controls the transfer characteristic of a variable analog receive-filter section.

    For the stepwise design of the transmit and receive filters, a combination of

    analytic techniques and simulated annealing is employed. First, the variable equalizer

    section, then the remaining fixed analog receive filter section are developed

    and finally the analog transmit filter is determined. The paper also describes

    the adjustment of the equalizer section, and the control of the sampling phase

    in the receiver front-end. The two equalizer parameters are controlled by an algorithm

    that operates on the sampled signals and adjusts these parameters to optimum settings

    independently of the sampling phase. The latter is controlled by a decision-directed

    phase-locked loop algorithm that becomes effective when equalization has been

    achieved. The dynamic behaviour and mean-square error in steady-state obtained

    with these control algorithms are investigated.'
  - 'In this paper, a practical control approach is suggested for series elastic actuators(SEAs)

    to generate the desired torque. Firstly, based on the analysis of a nonlinear

    SEA, the generic dynamics for a class of SEAs is summarized. Then the dynamic

    equations are transformed into a novel state-space form which is convenient for

    controller design. Finally, based on the recently developed finite-time control

    technique, a finite time disturbance observer and a continuous terminal sliding-mode

    control scheme are introduced to synthesize the control law. The finite-time stability

    of the proposed controller is theoretically ensured by Lyapunov analysis. Compared

    with most existing methods, the contribution of the paper is two-fold: (i) The

    proposed controller is suitable for not only linear, but also a class of nonlinear

    SEAs, which means that it is a more generic method for SEA torque control; (ii)

    It achieves faster convergence rate and works well even in the presence of unknown

    payload parameters and external disturbances. A series of experiments are carried

    out on the self-built SEA testbed to demonstrate the superior performance of the

    proposed controller by comparing it with the cascade-PID controller.'
- source_sentence: Matrix Methods for Solving Algebraic Systems
  sentences:
  - We present our public-domain software for the following tasks in sparse (or toric)
    elimination theory, given a well-constrained polynomial system. First, C code
    for computing the mixed volume of the system. Second, Maple code for defining
    an overconstrained system and constructing a Sylvester-type matrix of its sparse
    resultant. Third, C code for a Sylvester-type matrix of the sparse resultant and
    a superset of all common roots of the initial well-constrained system by computing
    the eigen-decomposition of a square matrix obtained from the resultant matrix.
    We conclude with experiments in computing molecular conformations.
  - 'Design trade-offs between estimation performance, processing delay and communication

    cost for a sensor scheduling problem is discussed. We consider a heterogeneous

    sensor network with two types of sensors: the first type has low-quality measurements,

    small processing delay and a light communication cost, while the second type is

    of high quality, but imposes a large processing delay and a high communication

    cost. Such a heterogeneous sensor network is common in applications, where for

    instance in a localization system the poor sensor can be an ultrasound sensor

    while the more powerful sensor can be a camera. Using a time-periodic Kalman filter,

    we show how one can find an optimal schedule of the sensor communication. One

    can significantly improve estimation quality by only using the expensive sensor

    rarely. We also demonstrate how simple sensor switching rules based on the Riccati

    equation drives the filter into a stable time-periodic Kalman filter.'
  - The Multi-stage Genetic Algorithm, MGA, is introduced to solve a class of compositional
    design problems. The problem with complicated constraints is formulated as a set
    of local subproblems with simple constraints and a supervising problem. Every
    subproblem is solved by GA to generate a set of suboptimal solutions. And in the
    supervising problem, the elements of each set are optimally combined by GA to
    yield the optimal solution for the original problem. The method is a learning
    method where the empirical knowledge obtained by solving the problem is effectively
    utilized to solve similar problems efficiently. Extended knapsack problems are
    solved to demonstrate the proposed method, and the efficiency of the method is
    shown. In addition, the method is successfully applied to optimal realization
    of cooperative robot soccer behaviors.
- source_sentence: Low-power partial-parallel Chien search architecture with polynomial
    degree reduction
  sentences:
  - In this paper, we present a novel attentive and immersive user interface based
    on gaze and hand gestures for interactive large-scale displays. The combination
    of gaze and hand gestures provide more interesting and immersive ways to manipulate
    3D information.
  - There is significant interest in the synthesis of discrete-state random fields,
    particularly those possessing structure over a wide range of scales. However,
    given a model on some finest, pixellated scale, it is computationally very difficult
    to synthesize both large- and small-scale structures, motivating research into
    hierarchical methods. In this paper, we propose a frozen-state approach to hierarchical
    modeling, in which simulated annealing is performed on each scale, constrained
    by the state estimates at the parent scale. This approach leads to significant
    advantages in both modeling flexibility and computational complexity. In particular,
    a complex structure can be realized with very simple, local, scale-dependent models,
    and by constraining the domain to be annealed at finer scales to only the uncertain
    portions of coarser scales; the approach leads to huge improvements in computational
    complexity. Results are shown for a synthesis problem in porous media.
  - The Chien search for the error locator polynomial root computation in BCH and
    Reed-Solomon decoding accounts for a significant part of the overall decoder power
    consumption, especially r long codes over finite fields of high order. For serial
    Chien search, the power consumption is substantially lowered by a polynomial degree
    reduction (PDR) scheme. Every time a root is found, it is factored out of the
    error locator polynomial. Only the hardware units associated with the reduced-degree
    polynomial coefficients are active. However, this PDR scheme can not be directly
    extended to partial-parallel Chien search, which is needed in any systems to achieve
    high throughput. By analyzing the formulas of the evaluation values over finite
    field elements and available intermediate results of the Chien search, this paper
    proposes a partial-parallel Chien search architecture that reduces the error locator
    polynomial degree on the fly whenever a root is found without using long division.
    For a 122-error-correcting BCH code over GF(215), an 8-parallel Chien search using
    the proposed architecture achieves 32% power reduction over existing partial-parallel
    architectures for a typical case.
- source_sentence: An efficient network-switch scheduling for real-time applications
  sentences:
  - Bursts consist of a varying number of asynchronous transfer mode cells corresponding
    to a datagram. Here, we generalized weighted fair queueing to a burst-based algorithm
    with preemption. The new algorithm enhances the performance of the switch service
    for real-time applications, and it preserves the quality of service guarantees.
    We study this algorithm theoretically and via simulations.
  - Online Social Network (OSN) is one of the hottest innovations in the past years,
    and the active users are more than a billion. For OSN, users' behavior is one
    of the important factors to study. This demonstration proposal presents Harbinger,
    an analyzing and predicting system for OSN users' behavior. In Harbinger, we focus
    on tweets' timestamps (when users post or share messages), visualize users' post
    behavior as well as message retweet number and build adjustable models to predict
    users' behavior. Predictions of users' behavior can be performed with the discovered
    behavior models and the results can be applied to many applications such as tweet
    crawler and advertisement.
  - The computation and memory required for kernel machines with N training samples
    is at least O(N2). Such a complexity is significant even for moderate size problems
    and is prohibitive for large datasets. We present an approximation technique based
    on the improved fast Gauss transform to reduce the computation to O(N). We also
    give an error bound for the approximation, and provide experimental results on
    the UCI datasets.
- source_sentence: Summarizing the Evidence on the International Trade in Illegal
    Wildlife
  sentences:
  - This paper proposes a method to represent classifiers or learned regression functions
    using an OWL ontology. Also proposed are methods for finding an appropriate learned
    function to answer a simple query. The ontology standardizes variable names and
    dependence properties, so that feature values can be given by users or found on
    the semantic web.
  - The global trade in illegal wildlife is a multi-billion dollar industry that threatens
    biodiversity and acts as a potential avenue for invasive species and disease spread.
    Despite the broad-sweeping implications of illegal wildlife sales, scientists
    have yet to describe the scope and scale of the trade. Here, we provide the most
    thorough and current description of the illegal wildlife trade using 12 years
    of seizure records compiled by TRAFFIC, the wildlife trade monitoring network.
    These records comprise 967 seizures including massive quantities of ivory, tiger
    skins, live reptiles, and other endangered wildlife and wildlife products. Most
    seizures originate in Southeast Asia, a recently identified hotspot for future
    emerging infectious diseases. To date, regulation and enforcement have been insufficient
    to effectively control the global trade in illegal wildlife at national and international
    scales. Effective control will require a multi-pronged approach including community-scale
    education and empowering local people to value wildlife, coordinated international
    regulation, and a greater allocation of national resources to on-the-ground enforcement.
  - Griffithsin (GRFT) is a red alga-derived lectin with demonstrated broad spectrum
    antiviral activity against enveloped viruses, including severe acute respiratory
    syndrome–Coronavirus (SARS-CoV), Japanese encephalitis virus (JEV), hepatitis
    C virus (HCV), and herpes simplex virus-2 (HSV-2). However, its pharmacokinetic
    profile remains largely undefined. Here, Sprague Dawley rats were administered
    a single dose of GRFT at 10 or 20 mg/kg by intravenous, oral, and subcutaneous
    routes, respectively, and serum GRFT levels were measured at select time points.
    In addition, the potential for systemic accumulation after oral dosing was assessed
    in rats after 10 daily treatments with GRFT (20 or 40 mg/kg). We found that parenterally-administered
    GRFT in rats displayed a complex elimination profile, which varied according to
    administration routes. However, GRFT was not orally bioavailable, even after chronic
    treatment. Nonetheless, active GRFT capable of neutralizing HIV-Env pseudoviruses
    was detected in rat fecal extracts after chronic oral dosing. These findings support
    further evaluation of GRFT for pre-exposure prophylaxis against emerging epidemics
    for which specific therapeutics are not available, including systemic and enteric
    infections caused by susceptible enveloped viruses. In addition, GRFT should be
    considered for antiviral therapy and the prevention of rectal transmission of
    HIV-1 and other susceptible viruses.
---


# SentenceTransformer based on nreimers/MiniLM-L6-H384-uncased

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nreimers/MiniLM-L6-H384-uncased](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nreimers/MiniLM-L6-H384-uncased](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) <!-- at revision 3276f0fac9d818781d7a1327b3ff818fc4e643c0 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```

SentenceTransformer(

  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 

  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SentenceTransformer



# Download from the 🤗 Hub

model = SentenceTransformer("sentence_transformers_model_id")

# Run inference

sentences = [

    'Summarizing the Evidence on the International Trade in Illegal Wildlife',

    'The global trade in illegal wildlife is a multi-billion dollar industry that threatens biodiversity and acts as a potential avenue for invasive species and disease spread. Despite the broad-sweeping implications of illegal wildlife sales, scientists have yet to describe the scope and scale of the trade. Here, we provide the most thorough and current description of the illegal wildlife trade using 12 years of seizure records compiled by TRAFFIC, the wildlife trade monitoring network. These records comprise 967 seizures including massive quantities of ivory, tiger skins, live reptiles, and other endangered wildlife and wildlife products. Most seizures originate in Southeast Asia, a recently identified hotspot for future emerging infectious diseases. To date, regulation and enforcement have been insufficient to effectively control the global trade in illegal wildlife at national and international scales. Effective control will require a multi-pronged approach including community-scale education and empowering local people to value wildlife, coordinated international regulation, and a greater allocation of national resources to on-the-ground enforcement.',

    'This paper proposes a method to represent classifiers or learned regression functions using an OWL ontology. Also proposed are methods for finding an appropriate learned function to answer a simple query. The ontology standardizes variable names and dependence properties, so that feature values can be given by users or found on the semantic web.',

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# [3, 384]



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings, embeddings)

print(similarities.shape)

# [3, 3]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 730,454 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                        | sentence_1                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                               |
  | details | <ul><li>min: 5 tokens</li><li>mean: 15.55 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 195.91 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | sentence_0                                                                                                                                           | sentence_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>A parallel algorithm for constructing independent spanning trees in twisted cubes</code>                                                       | <code>A long-standing conjecture mentions that a kk-connected graph GG admits kk independent spanning trees (ISTs for short) rooted at an arbitrary node of GG. An nn-dimensional twisted cube, denoted by TQnTQn, is a variation of hypercube with connectivity nn and has many features superior to those of hypercube. Yang (2010) first proposed an algorithm to construct nn edge-disjoint spanning trees in TQnTQn for any odd integer n⩾3n⩾3 and showed that half of them are ISTs. At a later stage, Wang et al. (2012) inferred that the above conjecture in affirmative for TQnTQn by providing an O(NlogN)O(NlogN) time algorithm to construct nn ISTs, where N=2nN=2n is the number of nodes in TQnTQn. However, this algorithm is executed in a recursive fashion and thus is hard to be parallelized. In this paper, we revisit the problem of constructing ISTs in twisted cubes and present a non-recursive algorithm. Our approach can be fully parallelized to make the use of all nodes of TQnTQn as processors for computation in such a way that each node can determine its parent in all spanning trees directly by referring its address and tree indices in O(logN)O(logN) time.</code>                                                                                                                                                        |
  | <code>A Novel Method for Separating and Locating Multiple Partial Discharge Sources in a Substation</code>                                           | <code>To separate and locate multi-partial discharge (PD) sources in a substation, the use of spectrum differences of ultra-high frequency signals radiated from various sources as characteristic parameters has been previously reported. However, the separation success rate was poor when signal-to-noise ratio was low, and the localization result was a coordinate on two-dimensional plane. In this paper, a novel method is proposed to improve the separation rate and the localization accuracy. A directional measuring platform is built using two directional antennas. The time delay (TD) of the signals captured by the antennas is calculated, and TD sequences are obtained by rotating the platform at different angles. The sequences are separated with the TD distribution feature, and the directions of the multi-PD sources are calculated. The PD sources are located by directions using the error probability method. To verify the method, a simulated model with three PD sources was established by XFdtd. Simulation results show that the separation rate is increased from 71% to 95% compared with the previous method, and an accurate three-dimensional localization result was obtained. A field test with two PD sources was carried out, and the sources were separated and located accurately by the proposed method.</code> |
  | <code>Every ternary permutation constraint satisfaction problem parameterized above average has a kernel with a quadratic number of variables</code> | <code>A ternary Permutation-CSP is specified by a subset @P of the symmetric group S"3. An instance of such a problem consists of a set of variables V and a multiset of constraints, which are ordered triples of distinct variables of V. The objective is to find a linear ordering @a of V that maximizes the number of triples whose rearrangement (under @a) follows a permutation in @P. We prove that every ternary Permutation-CSP parameterized above average has a kernel with a quadratic number of variables.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json

  {

      "scale": 20.0,

      "similarity_fct": "cos_sim"

  }

  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `num_train_epochs`: 5
- `multi_dataset_batch_sampler`: round_robin



#### All Hyperparameters

<details><summary>Click to expand</summary>



- `overwrite_output_dir`: False

- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch

- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save

- `hub_private_repo`: False

- `hub_always_push`: False

- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: batch_sampler

- `multi_dataset_batch_sampler`: round_robin



</details>



### Training Logs

<details><summary>Click to expand</summary>



| Epoch  | Step   | Training Loss |

|:------:|:------:|:-------------:|

| 0.0055 | 500    | 1.6701        |

| 0.0110 | 1000   | 0.8225        |

| 0.0164 | 1500   | 0.3883        |

| 0.0219 | 2000   | 0.2685        |

| 0.0274 | 2500   | 0.2349        |

| 0.0329 | 3000   | 0.1685        |

| 0.0383 | 3500   | 0.1409        |

| 0.0438 | 4000   | 0.1262        |

| 0.0493 | 4500   | 0.1195        |

| 0.0548 | 5000   | 0.1044        |

| 0.0602 | 5500   | 0.0989        |

| 0.0657 | 6000   | 0.0787        |

| 0.0712 | 6500   | 0.0895        |

| 0.0767 | 7000   | 0.0708        |

| 0.0821 | 7500   | 0.0834        |

| 0.0876 | 8000   | 0.0634        |

| 0.0931 | 8500   | 0.0643        |

| 0.0986 | 9000   | 0.0567        |

| 0.1040 | 9500   | 0.0646        |

| 0.1095 | 10000  | 0.0607        |

| 0.1150 | 10500  | 0.0564        |

| 0.1205 | 11000  | 0.068         |

| 0.1259 | 11500  | 0.0536        |

| 0.1314 | 12000  | 0.0594        |

| 0.1369 | 12500  | 0.057         |

| 0.1424 | 13000  | 0.0555        |

| 0.1479 | 13500  | 0.0485        |

| 0.1533 | 14000  | 0.0528        |

| 0.1588 | 14500  | 0.0478        |

| 0.1643 | 15000  | 0.0586        |

| 0.1698 | 15500  | 0.0539        |

| 0.1752 | 16000  | 0.0432        |

| 0.1807 | 16500  | 0.0542        |

| 0.1862 | 17000  | 0.0536        |

| 0.1917 | 17500  | 0.0492        |

| 0.1971 | 18000  | 0.0427        |

| 0.2026 | 18500  | 0.0489        |

| 0.2081 | 19000  | 0.0502        |

| 0.2136 | 19500  | 0.0432        |

| 0.2190 | 20000  | 0.0459        |

| 0.2245 | 20500  | 0.0376        |

| 0.2300 | 21000  | 0.0489        |

| 0.2355 | 21500  | 0.0515        |

| 0.2409 | 22000  | 0.0429        |

| 0.2464 | 22500  | 0.0417        |

| 0.2519 | 23000  | 0.0478        |

| 0.2574 | 23500  | 0.0359        |

| 0.2628 | 24000  | 0.0452        |

| 0.2683 | 24500  | 0.0443        |

| 0.2738 | 25000  | 0.0409        |

| 0.2793 | 25500  | 0.0421        |

| 0.2848 | 26000  | 0.0393        |

| 0.2902 | 26500  | 0.0409        |

| 0.2957 | 27000  | 0.032         |

| 0.3012 | 27500  | 0.0468        |

| 0.3067 | 28000  | 0.0285        |

| 0.3121 | 28500  | 0.0311        |

| 0.3176 | 29000  | 0.0304        |

| 0.3231 | 29500  | 0.0349        |

| 0.3286 | 30000  | 0.0352        |

| 0.3340 | 30500  | 0.0367        |

| 0.3395 | 31000  | 0.0385        |

| 0.3450 | 31500  | 0.0325        |

| 0.3505 | 32000  | 0.0302        |

| 0.3559 | 32500  | 0.0393        |

| 0.3614 | 33000  | 0.032         |

| 0.3669 | 33500  | 0.0263        |

| 0.3724 | 34000  | 0.0343        |

| 0.3778 | 34500  | 0.0349        |

| 0.3833 | 35000  | 0.0282        |

| 0.3888 | 35500  | 0.034         |

| 0.3943 | 36000  | 0.0376        |

| 0.3998 | 36500  | 0.0265        |

| 0.4052 | 37000  | 0.0267        |

| 0.4107 | 37500  | 0.0241        |

| 0.4162 | 38000  | 0.033         |

| 0.4217 | 38500  | 0.0323        |

| 0.4271 | 39000  | 0.0278        |

| 0.4326 | 39500  | 0.025         |

| 0.4381 | 40000  | 0.0363        |

| 0.4436 | 40500  | 0.0312        |

| 0.4490 | 41000  | 0.0307        |

| 0.4545 | 41500  | 0.0305        |

| 0.4600 | 42000  | 0.028         |

| 0.4655 | 42500  | 0.0279        |

| 0.4709 | 43000  | 0.0265        |

| 0.4764 | 43500  | 0.0262        |

| 0.4819 | 44000  | 0.0308        |

| 0.4874 | 44500  | 0.0282        |

| 0.4928 | 45000  | 0.0243        |

| 0.4983 | 45500  | 0.0236        |

| 0.5038 | 46000  | 0.02          |

| 0.5093 | 46500  | 0.0254        |

| 0.5147 | 47000  | 0.0275        |

| 0.5202 | 47500  | 0.0309        |

| 0.5257 | 48000  | 0.031         |

| 0.5312 | 48500  | 0.0271        |

| 0.5367 | 49000  | 0.0218        |

| 0.5421 | 49500  | 0.0249        |

| 0.5476 | 50000  | 0.0285        |

| 0.5531 | 50500  | 0.03          |

| 0.5586 | 51000  | 0.0284        |

| 0.5640 | 51500  | 0.0258        |

| 0.5695 | 52000  | 0.0228        |

| 0.5750 | 52500  | 0.0305        |

| 0.5805 | 53000  | 0.0234        |

| 0.5859 | 53500  | 0.0209        |

| 0.5914 | 54000  | 0.0341        |

| 0.5969 | 54500  | 0.0269        |

| 0.6024 | 55000  | 0.0267        |

| 0.6078 | 55500  | 0.0245        |

| 0.6133 | 56000  | 0.0263        |

| 0.6188 | 56500  | 0.0195        |

| 0.6243 | 57000  | 0.0209        |

| 0.6297 | 57500  | 0.0313        |

| 0.6352 | 58000  | 0.0247        |

| 0.6407 | 58500  | 0.0285        |

| 0.6462 | 59000  | 0.0301        |

| 0.6516 | 59500  | 0.0227        |

| 0.6571 | 60000  | 0.0235        |

| 0.6626 | 60500  | 0.0272        |

| 0.6681 | 61000  | 0.025         |

| 0.6736 | 61500  | 0.0276        |

| 0.6790 | 62000  | 0.0289        |

| 0.6845 | 62500  | 0.0232        |

| 0.6900 | 63000  | 0.0258        |

| 0.6955 | 63500  | 0.0254        |

| 0.7009 | 64000  | 0.0205        |

| 0.7064 | 64500  | 0.0216        |

| 0.7119 | 65000  | 0.0304        |

| 0.7174 | 65500  | 0.0234        |

| 0.7228 | 66000  | 0.0233        |

| 0.7283 | 66500  | 0.0239        |

| 0.7338 | 67000  | 0.0166        |

| 0.7393 | 67500  | 0.0211        |

| 0.7447 | 68000  | 0.0212        |

| 0.7502 | 68500  | 0.0247        |

| 0.7557 | 69000  | 0.023         |

| 0.7612 | 69500  | 0.0261        |

| 0.7666 | 70000  | 0.0204        |

| 0.7721 | 70500  | 0.026         |

| 0.7776 | 71000  | 0.0299        |

| 0.7831 | 71500  | 0.0183        |

| 0.7885 | 72000  | 0.0228        |

| 0.7940 | 72500  | 0.0181        |

| 0.7995 | 73000  | 0.0237        |

| 0.8050 | 73500  | 0.0237        |

| 0.8105 | 74000  | 0.0158        |

| 0.8159 | 74500  | 0.0222        |

| 0.8214 | 75000  | 0.0196        |

| 0.8269 | 75500  | 0.0242        |

| 0.8324 | 76000  | 0.0218        |

| 0.8378 | 76500  | 0.0201        |

| 0.8433 | 77000  | 0.026         |

| 0.8488 | 77500  | 0.0232        |

| 0.8543 | 78000  | 0.0254        |

| 0.8597 | 78500  | 0.0218        |

| 0.8652 | 79000  | 0.0219        |

| 0.8707 | 79500  | 0.0255        |

| 0.8762 | 80000  | 0.0201        |

| 0.8816 | 80500  | 0.0301        |

| 0.8871 | 81000  | 0.0275        |

| 0.8926 | 81500  | 0.018         |

| 0.8981 | 82000  | 0.028         |

| 0.9035 | 82500  | 0.0223        |

| 0.9090 | 83000  | 0.0201        |

| 0.9145 | 83500  | 0.0299        |

| 0.9200 | 84000  | 0.0251        |

| 0.9254 | 84500  | 0.0203        |

| 0.9309 | 85000  | 0.0209        |

| 0.9364 | 85500  | 0.0236        |

| 0.9419 | 86000  | 0.0191        |

| 0.9474 | 86500  | 0.0168        |

| 0.9528 | 87000  | 0.017         |

| 0.9583 | 87500  | 0.0201        |

| 0.9638 | 88000  | 0.0171        |

| 0.9693 | 88500  | 0.0217        |

| 0.9747 | 89000  | 0.0208        |

| 0.9802 | 89500  | 0.0157        |

| 0.9857 | 90000  | 0.0218        |

| 0.9912 | 90500  | 0.021         |

| 0.9966 | 91000  | 0.0159        |

| 1.0021 | 91500  | 0.0189        |

| 1.0076 | 92000  | 0.0182        |

| 1.0131 | 92500  | 0.0206        |

| 1.0185 | 93000  | 0.0179        |

| 1.0240 | 93500  | 0.0168        |

| 1.0295 | 94000  | 0.019         |

| 1.0350 | 94500  | 0.0173        |

| 1.0404 | 95000  | 0.0172        |

| 1.0459 | 95500  | 0.0187        |

| 1.0514 | 96000  | 0.0199        |

| 1.0569 | 96500  | 0.0202        |

| 1.0624 | 97000  | 0.0198        |

| 1.0678 | 97500  | 0.0157        |

| 1.0733 | 98000  | 0.0178        |

| 1.0788 | 98500  | 0.0147        |

| 1.0843 | 99000  | 0.0152        |

| 1.0897 | 99500  | 0.0152        |

| 1.0952 | 100000 | 0.0126        |

| 1.1007 | 100500 | 0.0115        |

| 1.1062 | 101000 | 0.0122        |

| 1.1116 | 101500 | 0.0097        |

| 1.1171 | 102000 | 0.0149        |

| 1.1226 | 102500 | 0.0151        |

| 1.1281 | 103000 | 0.0134        |

| 1.1335 | 103500 | 0.0157        |

| 1.1390 | 104000 | 0.0141        |

| 1.1445 | 104500 | 0.0139        |

| 1.1500 | 105000 | 0.0149        |

| 1.1554 | 105500 | 0.0103        |

| 1.1609 | 106000 | 0.0138        |

| 1.1664 | 106500 | 0.0116        |

| 1.1719 | 107000 | 0.0146        |

| 1.1773 | 107500 | 0.0168        |

| 1.1828 | 108000 | 0.0166        |

| 1.1883 | 108500 | 0.0136        |

| 1.1938 | 109000 | 0.0103        |

| 1.1993 | 109500 | 0.0128        |

| 1.2047 | 110000 | 0.0112        |

| 1.2102 | 110500 | 0.0103        |

| 1.2157 | 111000 | 0.0133        |

| 1.2212 | 111500 | 0.0118        |

| 1.2266 | 112000 | 0.009         |

| 1.2321 | 112500 | 0.0151        |

| 1.2376 | 113000 | 0.0146        |

| 1.2431 | 113500 | 0.0143        |

| 1.2485 | 114000 | 0.01          |

| 1.2540 | 114500 | 0.0147        |

| 1.2595 | 115000 | 0.011         |

| 1.2650 | 115500 | 0.0121        |

| 1.2704 | 116000 | 0.0117        |

| 1.2759 | 116500 | 0.0151        |

| 1.2814 | 117000 | 0.0143        |

| 1.2869 | 117500 | 0.0163        |

| 1.2923 | 118000 | 0.0135        |

| 1.2978 | 118500 | 0.0118        |

| 1.3033 | 119000 | 0.0129        |

| 1.3088 | 119500 | 0.0062        |

| 1.3142 | 120000 | 0.0127        |

| 1.3197 | 120500 | 0.014         |

| 1.3252 | 121000 | 0.0131        |

| 1.3307 | 121500 | 0.0162        |

| 1.3362 | 122000 | 0.0107        |

| 1.3416 | 122500 | 0.0125        |

| 1.3471 | 123000 | 0.0136        |

| 1.3526 | 123500 | 0.0112        |

| 1.3581 | 124000 | 0.0126        |

| 1.3635 | 124500 | 0.0079        |

| 1.3690 | 125000 | 0.0104        |

| 1.3745 | 125500 | 0.0137        |

| 1.3800 | 126000 | 0.0075        |

| 1.3854 | 126500 | 0.0108        |

| 1.3909 | 127000 | 0.0087        |

| 1.3964 | 127500 | 0.0138        |

| 1.4019 | 128000 | 0.0056        |

| 1.4073 | 128500 | 0.0067        |

| 1.4128 | 129000 | 0.0103        |

| 1.4183 | 129500 | 0.0102        |

| 1.4238 | 130000 | 0.0119        |

| 1.4292 | 130500 | 0.0094        |

| 1.4347 | 131000 | 0.0075        |

| 1.4402 | 131500 | 0.0146        |

| 1.4457 | 132000 | 0.0103        |

| 1.4511 | 132500 | 0.0123        |

| 1.4566 | 133000 | 0.0107        |

| 1.4621 | 133500 | 0.0071        |

| 1.4676 | 134000 | 0.0087        |

| 1.4731 | 134500 | 0.0072        |

| 1.4785 | 135000 | 0.0094        |

| 1.4840 | 135500 | 0.0083        |

| 1.4895 | 136000 | 0.0104        |

| 1.4950 | 136500 | 0.0076        |

| 1.5004 | 137000 | 0.006         |

| 1.5059 | 137500 | 0.0085        |

| 1.5114 | 138000 | 0.0061        |

| 1.5169 | 138500 | 0.0106        |

| 1.5223 | 139000 | 0.0088        |

| 1.5278 | 139500 | 0.0111        |

| 1.5333 | 140000 | 0.0094        |

| 1.5388 | 140500 | 0.0079        |

| 1.5442 | 141000 | 0.0095        |

| 1.5497 | 141500 | 0.0098        |

| 1.5552 | 142000 | 0.0139        |

| 1.5607 | 142500 | 0.0085        |

| 1.5661 | 143000 | 0.0094        |

| 1.5716 | 143500 | 0.0088        |

| 1.5771 | 144000 | 0.0092        |

| 1.5826 | 144500 | 0.0071        |

| 1.5880 | 145000 | 0.0101        |

| 1.5935 | 145500 | 0.011         |

| 1.5990 | 146000 | 0.0097        |

| 1.6045 | 146500 | 0.0071        |

| 1.6100 | 147000 | 0.0114        |

| 1.6154 | 147500 | 0.0087        |

| 1.6209 | 148000 | 0.0075        |

| 1.6264 | 148500 | 0.0039        |

| 1.6319 | 149000 | 0.0091        |

| 1.6373 | 149500 | 0.0117        |

| 1.6428 | 150000 | 0.01          |

| 1.6483 | 150500 | 0.0099        |

| 1.6538 | 151000 | 0.0069        |

| 1.6592 | 151500 | 0.0084        |

| 1.6647 | 152000 | 0.0118        |

| 1.6702 | 152500 | 0.0078        |

| 1.6757 | 153000 | 0.0067        |

| 1.6811 | 153500 | 0.0133        |

| 1.6866 | 154000 | 0.0079        |

| 1.6921 | 154500 | 0.0092        |

| 1.6976 | 155000 | 0.0069        |

| 1.7030 | 155500 | 0.008         |

| 1.7085 | 156000 | 0.0124        |

| 1.7140 | 156500 | 0.0112        |

| 1.7195 | 157000 | 0.0074        |

| 1.7249 | 157500 | 0.0091        |

| 1.7304 | 158000 | 0.0088        |

| 1.7359 | 158500 | 0.0061        |

| 1.7414 | 159000 | 0.0089        |

| 1.7469 | 159500 | 0.0082        |

| 1.7523 | 160000 | 0.0103        |

| 1.7578 | 160500 | 0.0094        |

| 1.7633 | 161000 | 0.0073        |

| 1.7688 | 161500 | 0.0116        |

| 1.7742 | 162000 | 0.0112        |

| 1.7797 | 162500 | 0.0057        |

| 1.7852 | 163000 | 0.0075        |

| 1.7907 | 163500 | 0.0062        |

| 1.7961 | 164000 | 0.0046        |

| 1.8016 | 164500 | 0.0091        |

| 1.8071 | 165000 | 0.0066        |

| 1.8126 | 165500 | 0.0051        |

| 1.8180 | 166000 | 0.0066        |

| 1.8235 | 166500 | 0.0093        |

| 1.8290 | 167000 | 0.0079        |

| 1.8345 | 167500 | 0.0067        |

| 1.8399 | 168000 | 0.007         |

| 1.8454 | 168500 | 0.0133        |

| 1.8509 | 169000 | 0.0071        |

| 1.8564 | 169500 | 0.0091        |

| 1.8619 | 170000 | 0.0067        |

| 1.8673 | 170500 | 0.0091        |

| 1.8728 | 171000 | 0.0103        |

| 1.8783 | 171500 | 0.0058        |

| 1.8838 | 172000 | 0.0116        |

| 1.8892 | 172500 | 0.0089        |

| 1.8947 | 173000 | 0.0137        |

| 1.9002 | 173500 | 0.0065        |

| 1.9057 | 174000 | 0.0098        |

| 1.9111 | 174500 | 0.0083        |

| 1.9166 | 175000 | 0.0115        |

| 1.9221 | 175500 | 0.0083        |

| 1.9276 | 176000 | 0.0084        |

| 1.9330 | 176500 | 0.0091        |

| 1.9385 | 177000 | 0.0092        |

| 1.9440 | 177500 | 0.0054        |

| 1.9495 | 178000 | 0.0049        |

| 1.9549 | 178500 | 0.0072        |

| 1.9604 | 179000 | 0.0052        |

| 1.9659 | 179500 | 0.0063        |

| 1.9714 | 180000 | 0.0107        |

| 1.9768 | 180500 | 0.0061        |

| 1.9823 | 181000 | 0.0059        |

| 1.9878 | 181500 | 0.0067        |

| 1.9933 | 182000 | 0.0078        |

| 1.9988 | 182500 | 0.007         |

| 2.0042 | 183000 | 0.0065        |

| 2.0097 | 183500 | 0.0073        |

| 2.0152 | 184000 | 0.01          |

| 2.0207 | 184500 | 0.0072        |

| 2.0261 | 185000 | 0.0055        |

| 2.0316 | 185500 | 0.0087        |

| 2.0371 | 186000 | 0.0077        |

| 2.0426 | 186500 | 0.0067        |

| 2.0480 | 187000 | 0.008         |

| 2.0535 | 187500 | 0.0074        |

| 2.0590 | 188000 | 0.0072        |

| 2.0645 | 188500 | 0.0045        |

| 2.0699 | 189000 | 0.0082        |

| 2.0754 | 189500 | 0.0042        |

| 2.0809 | 190000 | 0.0076        |

| 2.0864 | 190500 | 0.0058        |

| 2.0918 | 191000 | 0.005         |

| 2.0973 | 191500 | 0.0047        |

| 2.1028 | 192000 | 0.0045        |

| 2.1083 | 192500 | 0.0043        |

| 2.1137 | 193000 | 0.0049        |

| 2.1192 | 193500 | 0.0058        |

| 2.1247 | 194000 | 0.0081        |

| 2.1302 | 194500 | 0.0057        |

| 2.1357 | 195000 | 0.0047        |

| 2.1411 | 195500 | 0.0073        |

| 2.1466 | 196000 | 0.0056        |

| 2.1521 | 196500 | 0.006         |

| 2.1576 | 197000 | 0.0061        |

| 2.1630 | 197500 | 0.0042        |

| 2.1685 | 198000 | 0.0057        |

| 2.1740 | 198500 | 0.0055        |

| 2.1795 | 199000 | 0.0053        |

| 2.1849 | 199500 | 0.0085        |

| 2.1904 | 200000 | 0.005         |

| 2.1959 | 200500 | 0.0055        |

| 2.2014 | 201000 | 0.0032        |

| 2.2068 | 201500 | 0.0054        |

| 2.2123 | 202000 | 0.0037        |

| 2.2178 | 202500 | 0.0046        |

| 2.2233 | 203000 | 0.0029        |

| 2.2287 | 203500 | 0.0043        |

| 2.2342 | 204000 | 0.0063        |

| 2.2397 | 204500 | 0.0064        |

| 2.2452 | 205000 | 0.0046        |

| 2.2506 | 205500 | 0.0061        |

| 2.2561 | 206000 | 0.0034        |

| 2.2616 | 206500 | 0.0046        |

| 2.2671 | 207000 | 0.0059        |

| 2.2726 | 207500 | 0.0044        |

| 2.2780 | 208000 | 0.0054        |

| 2.2835 | 208500 | 0.0049        |

| 2.2890 | 209000 | 0.0096        |

| 2.2945 | 209500 | 0.0045        |

| 2.2999 | 210000 | 0.0057        |

| 2.3054 | 210500 | 0.0032        |

| 2.3109 | 211000 | 0.0031        |

| 2.3164 | 211500 | 0.0043        |

| 2.3218 | 212000 | 0.0068        |

| 2.3273 | 212500 | 0.0048        |

| 2.3328 | 213000 | 0.0042        |

| 2.3383 | 213500 | 0.0068        |

| 2.3437 | 214000 | 0.0041        |

| 2.3492 | 214500 | 0.0042        |

| 2.3547 | 215000 | 0.0051        |

| 2.3602 | 215500 | 0.0049        |

| 2.3656 | 216000 | 0.0019        |

| 2.3711 | 216500 | 0.0039        |

| 2.3766 | 217000 | 0.0068        |

| 2.3821 | 217500 | 0.0033        |

| 2.3875 | 218000 | 0.0048        |

| 2.3930 | 218500 | 0.0052        |

| 2.3985 | 219000 | 0.0063        |

| 2.4040 | 219500 | 0.003         |

| 2.4095 | 220000 | 0.0036        |

| 2.4149 | 220500 | 0.004         |

| 2.4204 | 221000 | 0.006         |

| 2.4259 | 221500 | 0.0048        |

| 2.4314 | 222000 | 0.0037        |

| 2.4368 | 222500 | 0.0034        |

| 2.4423 | 223000 | 0.0049        |

| 2.4478 | 223500 | 0.0036        |

| 2.4533 | 224000 | 0.0046        |

| 2.4587 | 224500 | 0.0039        |

| 2.4642 | 225000 | 0.0021        |

| 2.4697 | 225500 | 0.0035        |

| 2.4752 | 226000 | 0.0034        |

| 2.4806 | 226500 | 0.003         |

| 2.4861 | 227000 | 0.0032        |

| 2.4916 | 227500 | 0.005         |

| 2.4971 | 228000 | 0.0025        |

| 2.5025 | 228500 | 0.0036        |

| 2.5080 | 229000 | 0.0021        |

| 2.5135 | 229500 | 0.0025        |

| 2.5190 | 230000 | 0.0036        |

| 2.5245 | 230500 | 0.0033        |

| 2.5299 | 231000 | 0.0049        |

| 2.5354 | 231500 | 0.0044        |

| 2.5409 | 232000 | 0.0029        |

| 2.5464 | 232500 | 0.0028        |

| 2.5518 | 233000 | 0.0091        |

| 2.5573 | 233500 | 0.004         |

| 2.5628 | 234000 | 0.0036        |

| 2.5683 | 234500 | 0.0029        |

| 2.5737 | 235000 | 0.0035        |

| 2.5792 | 235500 | 0.0038        |

| 2.5847 | 236000 | 0.0028        |

| 2.5902 | 236500 | 0.0041        |

| 2.5956 | 237000 | 0.0037        |

| 2.6011 | 237500 | 0.0031        |

| 2.6066 | 238000 | 0.0036        |

| 2.6121 | 238500 | 0.0052        |

| 2.6175 | 239000 | 0.0031        |

| 2.6230 | 239500 | 0.0023        |

| 2.6285 | 240000 | 0.0043        |

| 2.6340 | 240500 | 0.0027        |

| 2.6394 | 241000 | 0.0048        |

| 2.6449 | 241500 | 0.0046        |

| 2.6504 | 242000 | 0.0038        |

| 2.6559 | 242500 | 0.0033        |

| 2.6614 | 243000 | 0.003         |

| 2.6668 | 243500 | 0.0057        |

| 2.6723 | 244000 | 0.0044        |

| 2.6778 | 244500 | 0.0058        |

| 2.6833 | 245000 | 0.003         |

| 2.6887 | 245500 | 0.0042        |

| 2.6942 | 246000 | 0.0045        |

| 2.6997 | 246500 | 0.0031        |

| 2.7052 | 247000 | 0.0021        |

| 2.7106 | 247500 | 0.0043        |

| 2.7161 | 248000 | 0.0058        |

| 2.7216 | 248500 | 0.0041        |

| 2.7271 | 249000 | 0.0038        |

| 2.7325 | 249500 | 0.0019        |

| 2.7380 | 250000 | 0.0029        |

| 2.7435 | 250500 | 0.003         |

| 2.7490 | 251000 | 0.0038        |

| 2.7544 | 251500 | 0.004         |

| 2.7599 | 252000 | 0.0049        |

| 2.7654 | 252500 | 0.0039        |

| 2.7709 | 253000 | 0.005         |

| 2.7763 | 253500 | 0.0046        |

| 2.7818 | 254000 | 0.0025        |

| 2.7873 | 254500 | 0.0044        |

| 2.7928 | 255000 | 0.0023        |

| 2.7983 | 255500 | 0.0038        |

| 2.8037 | 256000 | 0.0032        |

| 2.8092 | 256500 | 0.0021        |

| 2.8147 | 257000 | 0.0023        |

| 2.8202 | 257500 | 0.0042        |

| 2.8256 | 258000 | 0.0042        |

| 2.8311 | 258500 | 0.0053        |

| 2.8366 | 259000 | 0.0021        |

| 2.8421 | 259500 | 0.0033        |

| 2.8475 | 260000 | 0.0047        |

| 2.8530 | 260500 | 0.0048        |

| 2.8585 | 261000 | 0.0022        |

| 2.8640 | 261500 | 0.0036        |

| 2.8694 | 262000 | 0.0034        |

| 2.8749 | 262500 | 0.0029        |

| 2.8804 | 263000 | 0.0038        |

| 2.8859 | 263500 | 0.0067        |

| 2.8913 | 264000 | 0.003         |

| 2.8968 | 264500 | 0.0049        |

| 2.9023 | 265000 | 0.0027        |

| 2.9078 | 265500 | 0.004         |

| 2.9132 | 266000 | 0.0042        |

| 2.9187 | 266500 | 0.0042        |

| 2.9242 | 267000 | 0.0038        |

| 2.9297 | 267500 | 0.0029        |

| 2.9352 | 268000 | 0.0039        |

| 2.9406 | 268500 | 0.0039        |

| 2.9461 | 269000 | 0.002         |

| 2.9516 | 269500 | 0.0022        |

| 2.9571 | 270000 | 0.002         |

| 2.9625 | 270500 | 0.003         |

| 2.9680 | 271000 | 0.0019        |

| 2.9735 | 271500 | 0.0044        |

| 2.9790 | 272000 | 0.0028        |

| 2.9844 | 272500 | 0.0031        |

| 2.9899 | 273000 | 0.0025        |

| 2.9954 | 273500 | 0.0021        |

| 3.0009 | 274000 | 0.0025        |

| 3.0063 | 274500 | 0.0038        |

| 3.0118 | 275000 | 0.0045        |

| 3.0173 | 275500 | 0.002         |

| 3.0228 | 276000 | 0.0035        |

| 3.0282 | 276500 | 0.0046        |

| 3.0337 | 277000 | 0.0033        |

| 3.0392 | 277500 | 0.002         |

| 3.0447 | 278000 | 0.0036        |

| 3.0501 | 278500 | 0.0025        |

| 3.0556 | 279000 | 0.0039        |

| 3.0611 | 279500 | 0.0029        |

| 3.0666 | 280000 | 0.004         |

| 3.0721 | 280500 | 0.0023        |

| 3.0775 | 281000 | 0.0019        |

| 3.0830 | 281500 | 0.0019        |

| 3.0885 | 282000 | 0.0027        |

| 3.0940 | 282500 | 0.0014        |

| 3.0994 | 283000 | 0.0019        |

| 3.1049 | 283500 | 0.0018        |

| 3.1104 | 284000 | 0.0016        |

| 3.1159 | 284500 | 0.0017        |

| 3.1213 | 285000 | 0.0049        |

| 3.1268 | 285500 | 0.0022        |

| 3.1323 | 286000 | 0.0023        |

| 3.1378 | 286500 | 0.0016        |

| 3.1432 | 287000 | 0.002         |

| 3.1487 | 287500 | 0.0025        |

| 3.1542 | 288000 | 0.0012        |

| 3.1597 | 288500 | 0.0021        |

| 3.1651 | 289000 | 0.0017        |

| 3.1706 | 289500 | 0.0019        |

| 3.1761 | 290000 | 0.0019        |

| 3.1816 | 290500 | 0.0042        |

| 3.1871 | 291000 | 0.0027        |

| 3.1925 | 291500 | 0.0011        |

| 3.1980 | 292000 | 0.002         |

| 3.2035 | 292500 | 0.0021        |

| 3.2090 | 293000 | 0.0015        |

| 3.2144 | 293500 | 0.0017        |

| 3.2199 | 294000 | 0.002         |

| 3.2254 | 294500 | 0.0012        |

| 3.2309 | 295000 | 0.0017        |

| 3.2363 | 295500 | 0.0029        |

| 3.2418 | 296000 | 0.0019        |

| 3.2473 | 296500 | 0.0017        |

| 3.2528 | 297000 | 0.0019        |

| 3.2582 | 297500 | 0.0012        |

| 3.2637 | 298000 | 0.0024        |

| 3.2692 | 298500 | 0.0017        |

| 3.2747 | 299000 | 0.0022        |

| 3.2801 | 299500 | 0.002         |

| 3.2856 | 300000 | 0.0028        |

| 3.2911 | 300500 | 0.0036        |

| 3.2966 | 301000 | 0.0015        |

| 3.3020 | 301500 | 0.0024        |

| 3.3075 | 302000 | 0.0015        |

| 3.3130 | 302500 | 0.0012        |

| 3.3185 | 303000 | 0.0022        |

| 3.3240 | 303500 | 0.0015        |

| 3.3294 | 304000 | 0.0023        |

| 3.3349 | 304500 | 0.0017        |

| 3.3404 | 305000 | 0.0021        |

| 3.3459 | 305500 | 0.0017        |

| 3.3513 | 306000 | 0.0015        |

| 3.3568 | 306500 | 0.0023        |

| 3.3623 | 307000 | 0.0014        |

| 3.3678 | 307500 | 0.0019        |

| 3.3732 | 308000 | 0.0017        |

| 3.3787 | 308500 | 0.0027        |

| 3.3842 | 309000 | 0.0016        |

| 3.3897 | 309500 | 0.0019        |

| 3.3951 | 310000 | 0.0037        |

| 3.4006 | 310500 | 0.0016        |

| 3.4061 | 311000 | 0.0012        |

| 3.4116 | 311500 | 0.0024        |

| 3.4170 | 312000 | 0.0016        |

| 3.4225 | 312500 | 0.0022        |

| 3.4280 | 313000 | 0.0015        |

| 3.4335 | 313500 | 0.0017        |

| 3.4389 | 314000 | 0.0015        |

| 3.4444 | 314500 | 0.0018        |

| 3.4499 | 315000 | 0.0015        |

| 3.4554 | 315500 | 0.0019        |

| 3.4609 | 316000 | 0.0009        |

| 3.4663 | 316500 | 0.001         |

| 3.4718 | 317000 | 0.001         |

| 3.4773 | 317500 | 0.0023        |

| 3.4828 | 318000 | 0.0012        |

| 3.4882 | 318500 | 0.0012        |

| 3.4937 | 319000 | 0.0011        |

| 3.4992 | 319500 | 0.0008        |

| 3.5047 | 320000 | 0.0018        |

| 3.5101 | 320500 | 0.0009        |

| 3.5156 | 321000 | 0.0016        |

| 3.5211 | 321500 | 0.0012        |

| 3.5266 | 322000 | 0.0015        |

| 3.5320 | 322500 | 0.0024        |

| 3.5375 | 323000 | 0.0016        |

| 3.5430 | 323500 | 0.0014        |

| 3.5485 | 324000 | 0.0014        |

| 3.5539 | 324500 | 0.0047        |

| 3.5594 | 325000 | 0.0013        |

| 3.5649 | 325500 | 0.0012        |

| 3.5704 | 326000 | 0.0013        |

| 3.5758 | 326500 | 0.0011        |

| 3.5813 | 327000 | 0.0011        |

| 3.5868 | 327500 | 0.0016        |

| 3.5923 | 328000 | 0.0022        |

| 3.5978 | 328500 | 0.0017        |

| 3.6032 | 329000 | 0.0012        |

| 3.6087 | 329500 | 0.002         |

| 3.6142 | 330000 | 0.0016        |

| 3.6197 | 330500 | 0.0009        |

| 3.6251 | 331000 | 0.0011        |

| 3.6306 | 331500 | 0.0019        |

| 3.6361 | 332000 | 0.0011        |

| 3.6416 | 332500 | 0.0021        |

| 3.6470 | 333000 | 0.0029        |

| 3.6525 | 333500 | 0.001         |

| 3.6580 | 334000 | 0.0016        |

| 3.6635 | 334500 | 0.0016        |

| 3.6689 | 335000 | 0.0036        |

| 3.6744 | 335500 | 0.0012        |

| 3.6799 | 336000 | 0.003         |

| 3.6854 | 336500 | 0.0014        |

| 3.6908 | 337000 | 0.0018        |

| 3.6963 | 337500 | 0.001         |

| 3.7018 | 338000 | 0.001         |

| 3.7073 | 338500 | 0.0016        |

| 3.7127 | 339000 | 0.0025        |

| 3.7182 | 339500 | 0.001         |

| 3.7237 | 340000 | 0.0018        |

| 3.7292 | 340500 | 0.0015        |

| 3.7347 | 341000 | 0.001         |

| 3.7401 | 341500 | 0.0009        |

| 3.7456 | 342000 | 0.0013        |

| 3.7511 | 342500 | 0.0014        |

| 3.7566 | 343000 | 0.0013        |

| 3.7620 | 343500 | 0.0011        |

| 3.7675 | 344000 | 0.0026        |

| 3.7730 | 344500 | 0.0014        |

| 3.7785 | 345000 | 0.0021        |

| 3.7839 | 345500 | 0.0015        |

| 3.7894 | 346000 | 0.0013        |

| 3.7949 | 346500 | 0.0013        |

| 3.8004 | 347000 | 0.0019        |

| 3.8058 | 347500 | 0.0009        |

| 3.8113 | 348000 | 0.0009        |

| 3.8168 | 348500 | 0.0014        |

| 3.8223 | 349000 | 0.0012        |

| 3.8277 | 349500 | 0.0032        |

| 3.8332 | 350000 | 0.0015        |

| 3.8387 | 350500 | 0.0011        |

| 3.8442 | 351000 | 0.002         |

| 3.8497 | 351500 | 0.0012        |

| 3.8551 | 352000 | 0.0026        |

| 3.8606 | 352500 | 0.001         |

| 3.8661 | 353000 | 0.0018        |

| 3.8716 | 353500 | 0.0014        |

| 3.8770 | 354000 | 0.001         |

| 3.8825 | 354500 | 0.0018        |

| 3.8880 | 355000 | 0.0027        |

| 3.8935 | 355500 | 0.0027        |

| 3.8989 | 356000 | 0.0011        |

| 3.9044 | 356500 | 0.0024        |

| 3.9099 | 357000 | 0.0012        |

| 3.9154 | 357500 | 0.0018        |

| 3.9208 | 358000 | 0.0012        |

| 3.9263 | 358500 | 0.0015        |

| 3.9318 | 359000 | 0.0015        |

| 3.9373 | 359500 | 0.0018        |

| 3.9427 | 360000 | 0.0017        |

| 3.9482 | 360500 | 0.0009        |

| 3.9537 | 361000 | 0.001         |

| 3.9592 | 361500 | 0.0013        |

| 3.9646 | 362000 | 0.0008        |

| 3.9701 | 362500 | 0.0018        |

| 3.9756 | 363000 | 0.0027        |

| 3.9811 | 363500 | 0.0009        |

| 3.9866 | 364000 | 0.0008        |

| 3.9920 | 364500 | 0.001         |

| 3.9975 | 365000 | 0.0009        |

| 4.0030 | 365500 | 0.0012        |

| 4.0085 | 366000 | 0.0011        |

| 4.0139 | 366500 | 0.0023        |

| 4.0194 | 367000 | 0.0023        |

| 4.0249 | 367500 | 0.0012        |

| 4.0304 | 368000 | 0.0018        |

| 4.0358 | 368500 | 0.0013        |

| 4.0413 | 369000 | 0.0009        |

| 4.0468 | 369500 | 0.0016        |

| 4.0523 | 370000 | 0.0011        |

| 4.0577 | 370500 | 0.0011        |

| 4.0632 | 371000 | 0.0009        |

| 4.0687 | 371500 | 0.0012        |

| 4.0742 | 372000 | 0.0011        |

| 4.0796 | 372500 | 0.0008        |

| 4.0851 | 373000 | 0.001         |

| 4.0906 | 373500 | 0.0008        |

| 4.0961 | 374000 | 0.0009        |

| 4.1015 | 374500 | 0.0008        |

| 4.1070 | 375000 | 0.0008        |

| 4.1125 | 375500 | 0.0008        |

| 4.1180 | 376000 | 0.0009        |

| 4.1235 | 376500 | 0.0021        |

| 4.1289 | 377000 | 0.0007        |

| 4.1344 | 377500 | 0.0014        |

| 4.1399 | 378000 | 0.0008        |

| 4.1454 | 378500 | 0.0015        |

| 4.1508 | 379000 | 0.0008        |

| 4.1563 | 379500 | 0.0008        |

| 4.1618 | 380000 | 0.0015        |

| 4.1673 | 380500 | 0.0008        |

| 4.1727 | 381000 | 0.0009        |

| 4.1782 | 381500 | 0.0018        |

| 4.1837 | 382000 | 0.0013        |

| 4.1892 | 382500 | 0.0012        |

| 4.1946 | 383000 | 0.0008        |

| 4.2001 | 383500 | 0.0008        |

| 4.2056 | 384000 | 0.0008        |

| 4.2111 | 384500 | 0.0008        |

| 4.2165 | 385000 | 0.001         |

| 4.2220 | 385500 | 0.0008        |

| 4.2275 | 386000 | 0.0008        |

| 4.2330 | 386500 | 0.0009        |

| 4.2384 | 387000 | 0.0008        |

| 4.2439 | 387500 | 0.0008        |

| 4.2494 | 388000 | 0.0011        |

| 4.2549 | 388500 | 0.0009        |

| 4.2604 | 389000 | 0.0007        |

| 4.2658 | 389500 | 0.001         |

| 4.2713 | 390000 | 0.0007        |

| 4.2768 | 390500 | 0.0011        |

| 4.2823 | 391000 | 0.0007        |

| 4.2877 | 391500 | 0.0019        |

| 4.2932 | 392000 | 0.0009        |

| 4.2987 | 392500 | 0.0011        |

| 4.3042 | 393000 | 0.0008        |

| 4.3096 | 393500 | 0.0006        |

| 4.3151 | 394000 | 0.0009        |

| 4.3206 | 394500 | 0.001         |

| 4.3261 | 395000 | 0.0007        |

| 4.3315 | 395500 | 0.0011        |

| 4.3370 | 396000 | 0.0008        |

| 4.3425 | 396500 | 0.0007        |

| 4.3480 | 397000 | 0.0007        |

| 4.3534 | 397500 | 0.0007        |

| 4.3589 | 398000 | 0.001         |

| 4.3644 | 398500 | 0.0008        |

| 4.3699 | 399000 | 0.001         |

| 4.3753 | 399500 | 0.0014        |

| 4.3808 | 400000 | 0.0006        |

| 4.3863 | 400500 | 0.0006        |

| 4.3918 | 401000 | 0.001         |

| 4.3973 | 401500 | 0.002         |

| 4.4027 | 402000 | 0.0006        |

| 4.4082 | 402500 | 0.0007        |

| 4.4137 | 403000 | 0.001         |

| 4.4192 | 403500 | 0.0008        |

| 4.4246 | 404000 | 0.0008        |

| 4.4301 | 404500 | 0.0009        |

| 4.4356 | 405000 | 0.0005        |

| 4.4411 | 405500 | 0.0008        |

| 4.4465 | 406000 | 0.0008        |

| 4.4520 | 406500 | 0.0007        |

| 4.4575 | 407000 | 0.0006        |

| 4.4630 | 407500 | 0.0006        |

| 4.4684 | 408000 | 0.0006        |

| 4.4739 | 408500 | 0.0006        |

| 4.4794 | 409000 | 0.0009        |

| 4.4849 | 409500 | 0.0007        |

| 4.4903 | 410000 | 0.0009        |

| 4.4958 | 410500 | 0.0006        |

| 4.5013 | 411000 | 0.0007        |

| 4.5068 | 411500 | 0.0006        |

| 4.5122 | 412000 | 0.0007        |

| 4.5177 | 412500 | 0.0006        |

| 4.5232 | 413000 | 0.0008        |

| 4.5287 | 413500 | 0.0007        |

| 4.5342 | 414000 | 0.0013        |

| 4.5396 | 414500 | 0.0006        |

| 4.5451 | 415000 | 0.0009        |

| 4.5506 | 415500 | 0.0015        |

| 4.5561 | 416000 | 0.0014        |

| 4.5615 | 416500 | 0.0007        |

| 4.5670 | 417000 | 0.0007        |

| 4.5725 | 417500 | 0.0008        |

| 4.5780 | 418000 | 0.0008        |

| 4.5834 | 418500 | 0.0007        |

| 4.5889 | 419000 | 0.0006        |

| 4.5944 | 419500 | 0.0008        |

| 4.5999 | 420000 | 0.0008        |

| 4.6053 | 420500 | 0.0006        |

| 4.6108 | 421000 | 0.001         |

| 4.6163 | 421500 | 0.0005        |

| 4.6218 | 422000 | 0.0007        |

| 4.6272 | 422500 | 0.0006        |

| 4.6327 | 423000 | 0.0007        |

| 4.6382 | 423500 | 0.0009        |

| 4.6437 | 424000 | 0.0014        |

| 4.6492 | 424500 | 0.0008        |

| 4.6546 | 425000 | 0.0006        |

| 4.6601 | 425500 | 0.0006        |

| 4.6656 | 426000 | 0.0016        |

| 4.6711 | 426500 | 0.0006        |

| 4.6765 | 427000 | 0.0006        |

| 4.6820 | 427500 | 0.0012        |

| 4.6875 | 428000 | 0.0007        |

| 4.6930 | 428500 | 0.0009        |

| 4.6984 | 429000 | 0.0006        |

| 4.7039 | 429500 | 0.0005        |

| 4.7094 | 430000 | 0.0007        |

| 4.7149 | 430500 | 0.0007        |

| 4.7203 | 431000 | 0.0006        |

| 4.7258 | 431500 | 0.0006        |

| 4.7313 | 432000 | 0.0006        |

| 4.7368 | 432500 | 0.0006        |

| 4.7422 | 433000 | 0.0006        |

| 4.7477 | 433500 | 0.0006        |

| 4.7532 | 434000 | 0.0006        |

| 4.7587 | 434500 | 0.0006        |

| 4.7641 | 435000 | 0.0006        |

| 4.7696 | 435500 | 0.0018        |

| 4.7751 | 436000 | 0.0009        |

| 4.7806 | 436500 | 0.0007        |

| 4.7861 | 437000 | 0.0007        |

| 4.7915 | 437500 | 0.0005        |

| 4.7970 | 438000 | 0.0009        |

| 4.8025 | 438500 | 0.0013        |

| 4.8080 | 439000 | 0.0007        |

| 4.8134 | 439500 | 0.0006        |

| 4.8189 | 440000 | 0.0007        |

| 4.8244 | 440500 | 0.001         |

| 4.8299 | 441000 | 0.0019        |

| 4.8353 | 441500 | 0.0006        |

| 4.8408 | 442000 | 0.0006        |

| 4.8463 | 442500 | 0.0009        |

| 4.8518 | 443000 | 0.0006        |

| 4.8572 | 443500 | 0.001         |

| 4.8627 | 444000 | 0.0011        |

| 4.8682 | 444500 | 0.0007        |

| 4.8737 | 445000 | 0.0007        |

| 4.8791 | 445500 | 0.0007        |

| 4.8846 | 446000 | 0.0018        |

| 4.8901 | 446500 | 0.0007        |

| 4.8956 | 447000 | 0.0012        |

| 4.9010 | 447500 | 0.0007        |

| 4.9065 | 448000 | 0.0009        |

| 4.9120 | 448500 | 0.0007        |

| 4.9175 | 449000 | 0.001         |

| 4.9230 | 449500 | 0.0007        |

| 4.9284 | 450000 | 0.0007        |

| 4.9339 | 450500 | 0.0007        |

| 4.9394 | 451000 | 0.0011        |

| 4.9449 | 451500 | 0.0005        |

| 4.9503 | 452000 | 0.0007        |

| 4.9558 | 452500 | 0.0006        |

| 4.9613 | 453000 | 0.0009        |

| 4.9668 | 453500 | 0.0008        |

| 4.9722 | 454000 | 0.0015        |

| 4.9777 | 454500 | 0.0008        |

| 4.9832 | 455000 | 0.0006        |

| 4.9887 | 455500 | 0.0006        |

| 4.9941 | 456000 | 0.0007        |

| 4.9996 | 456500 | 0.0006        |



</details>



### Framework Versions

- Python: 3.12.2

- Sentence Transformers: 3.0.1

- Transformers: 4.42.3

- PyTorch: 2.3.1+cu121

- Accelerate: 0.32.1

- Datasets: 2.20.0

- Tokenizers: 0.19.1



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



#### MultipleNegativesRankingLoss

```bibtex

@misc{henderson2017efficient,

    title={Efficient Natural Language Response Suggestion for Smart Reply}, 

    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},

    year={2017},

    eprint={1705.00652},

    archivePrefix={arXiv},

    primaryClass={cs.CL}

}

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->