File size: 67,034 Bytes
e5c2bef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 |
---
base_model: nreimers/MiniLM-L6-H384-uncased
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:730454
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Continuous finite-time control approach for series elastic actuator
sentences:
- Distributed coordination is difficult, especially when the system may suffer intrusions
that corrupt some component processes. We introduce the abstraction of a failure
detector that a process can use to (imperfectly) detect the corruption (Byzantine
failure) of another process. In general, our failure detectors can be unreliable,
both by reporting a correct process to be faulty or by reporting a faulty process
to be correct. However, we show that if these detectors satisfy certain plausible
properties, then the well known distributed consensus problem can be solved. We
also present a randomized protocol using failure detectors that solves the consensus
problem if either the requisite properties of failure detectors hold or if certain
highly probable events eventually occur. This work can be viewed as a generalization
of benign failure detectors popular in the distributed computing literature.
- 'This paper deals with multilevel partial-response class-IV (PRIV) transmission
over unshielded twisted-pair (UTP) cables. Specifically, transmission at a rate
of 155.52 Mb/s over data-grade UTP cables for local-area networking is considered.
As a low-complexity method used to compensate for cable-length dependent signal
distortion, adaptive analog equalization with two controlled parameters is proposed:
one parameter determines a frequency-independent receiver gain, the other parameter
controls the transfer characteristic of a variable analog receive-filter section.
For the stepwise design of the transmit and receive filters, a combination of
analytic techniques and simulated annealing is employed. First, the variable equalizer
section, then the remaining fixed analog receive filter section are developed
and finally the analog transmit filter is determined. The paper also describes
the adjustment of the equalizer section, and the control of the sampling phase
in the receiver front-end. The two equalizer parameters are controlled by an algorithm
that operates on the sampled signals and adjusts these parameters to optimum settings
independently of the sampling phase. The latter is controlled by a decision-directed
phase-locked loop algorithm that becomes effective when equalization has been
achieved. The dynamic behaviour and mean-square error in steady-state obtained
with these control algorithms are investigated.'
- 'In this paper, a practical control approach is suggested for series elastic actuators(SEAs)
to generate the desired torque. Firstly, based on the analysis of a nonlinear
SEA, the generic dynamics for a class of SEAs is summarized. Then the dynamic
equations are transformed into a novel state-space form which is convenient for
controller design. Finally, based on the recently developed finite-time control
technique, a finite time disturbance observer and a continuous terminal sliding-mode
control scheme are introduced to synthesize the control law. The finite-time stability
of the proposed controller is theoretically ensured by Lyapunov analysis. Compared
with most existing methods, the contribution of the paper is two-fold: (i) The
proposed controller is suitable for not only linear, but also a class of nonlinear
SEAs, which means that it is a more generic method for SEA torque control; (ii)
It achieves faster convergence rate and works well even in the presence of unknown
payload parameters and external disturbances. A series of experiments are carried
out on the self-built SEA testbed to demonstrate the superior performance of the
proposed controller by comparing it with the cascade-PID controller.'
- source_sentence: Matrix Methods for Solving Algebraic Systems
sentences:
- We present our public-domain software for the following tasks in sparse (or toric)
elimination theory, given a well-constrained polynomial system. First, C code
for computing the mixed volume of the system. Second, Maple code for defining
an overconstrained system and constructing a Sylvester-type matrix of its sparse
resultant. Third, C code for a Sylvester-type matrix of the sparse resultant and
a superset of all common roots of the initial well-constrained system by computing
the eigen-decomposition of a square matrix obtained from the resultant matrix.
We conclude with experiments in computing molecular conformations.
- 'Design trade-offs between estimation performance, processing delay and communication
cost for a sensor scheduling problem is discussed. We consider a heterogeneous
sensor network with two types of sensors: the first type has low-quality measurements,
small processing delay and a light communication cost, while the second type is
of high quality, but imposes a large processing delay and a high communication
cost. Such a heterogeneous sensor network is common in applications, where for
instance in a localization system the poor sensor can be an ultrasound sensor
while the more powerful sensor can be a camera. Using a time-periodic Kalman filter,
we show how one can find an optimal schedule of the sensor communication. One
can significantly improve estimation quality by only using the expensive sensor
rarely. We also demonstrate how simple sensor switching rules based on the Riccati
equation drives the filter into a stable time-periodic Kalman filter.'
- The Multi-stage Genetic Algorithm, MGA, is introduced to solve a class of compositional
design problems. The problem with complicated constraints is formulated as a set
of local subproblems with simple constraints and a supervising problem. Every
subproblem is solved by GA to generate a set of suboptimal solutions. And in the
supervising problem, the elements of each set are optimally combined by GA to
yield the optimal solution for the original problem. The method is a learning
method where the empirical knowledge obtained by solving the problem is effectively
utilized to solve similar problems efficiently. Extended knapsack problems are
solved to demonstrate the proposed method, and the efficiency of the method is
shown. In addition, the method is successfully applied to optimal realization
of cooperative robot soccer behaviors.
- source_sentence: Low-power partial-parallel Chien search architecture with polynomial
degree reduction
sentences:
- In this paper, we present a novel attentive and immersive user interface based
on gaze and hand gestures for interactive large-scale displays. The combination
of gaze and hand gestures provide more interesting and immersive ways to manipulate
3D information.
- There is significant interest in the synthesis of discrete-state random fields,
particularly those possessing structure over a wide range of scales. However,
given a model on some finest, pixellated scale, it is computationally very difficult
to synthesize both large- and small-scale structures, motivating research into
hierarchical methods. In this paper, we propose a frozen-state approach to hierarchical
modeling, in which simulated annealing is performed on each scale, constrained
by the state estimates at the parent scale. This approach leads to significant
advantages in both modeling flexibility and computational complexity. In particular,
a complex structure can be realized with very simple, local, scale-dependent models,
and by constraining the domain to be annealed at finer scales to only the uncertain
portions of coarser scales; the approach leads to huge improvements in computational
complexity. Results are shown for a synthesis problem in porous media.
- The Chien search for the error locator polynomial root computation in BCH and
Reed-Solomon decoding accounts for a significant part of the overall decoder power
consumption, especially r long codes over finite fields of high order. For serial
Chien search, the power consumption is substantially lowered by a polynomial degree
reduction (PDR) scheme. Every time a root is found, it is factored out of the
error locator polynomial. Only the hardware units associated with the reduced-degree
polynomial coefficients are active. However, this PDR scheme can not be directly
extended to partial-parallel Chien search, which is needed in any systems to achieve
high throughput. By analyzing the formulas of the evaluation values over finite
field elements and available intermediate results of the Chien search, this paper
proposes a partial-parallel Chien search architecture that reduces the error locator
polynomial degree on the fly whenever a root is found without using long division.
For a 122-error-correcting BCH code over GF(215), an 8-parallel Chien search using
the proposed architecture achieves 32% power reduction over existing partial-parallel
architectures for a typical case.
- source_sentence: An efficient network-switch scheduling for real-time applications
sentences:
- Bursts consist of a varying number of asynchronous transfer mode cells corresponding
to a datagram. Here, we generalized weighted fair queueing to a burst-based algorithm
with preemption. The new algorithm enhances the performance of the switch service
for real-time applications, and it preserves the quality of service guarantees.
We study this algorithm theoretically and via simulations.
- Online Social Network (OSN) is one of the hottest innovations in the past years,
and the active users are more than a billion. For OSN, users' behavior is one
of the important factors to study. This demonstration proposal presents Harbinger,
an analyzing and predicting system for OSN users' behavior. In Harbinger, we focus
on tweets' timestamps (when users post or share messages), visualize users' post
behavior as well as message retweet number and build adjustable models to predict
users' behavior. Predictions of users' behavior can be performed with the discovered
behavior models and the results can be applied to many applications such as tweet
crawler and advertisement.
- The computation and memory required for kernel machines with N training samples
is at least O(N2). Such a complexity is significant even for moderate size problems
and is prohibitive for large datasets. We present an approximation technique based
on the improved fast Gauss transform to reduce the computation to O(N). We also
give an error bound for the approximation, and provide experimental results on
the UCI datasets.
- source_sentence: Summarizing the Evidence on the International Trade in Illegal
Wildlife
sentences:
- This paper proposes a method to represent classifiers or learned regression functions
using an OWL ontology. Also proposed are methods for finding an appropriate learned
function to answer a simple query. The ontology standardizes variable names and
dependence properties, so that feature values can be given by users or found on
the semantic web.
- The global trade in illegal wildlife is a multi-billion dollar industry that threatens
biodiversity and acts as a potential avenue for invasive species and disease spread.
Despite the broad-sweeping implications of illegal wildlife sales, scientists
have yet to describe the scope and scale of the trade. Here, we provide the most
thorough and current description of the illegal wildlife trade using 12 years
of seizure records compiled by TRAFFIC, the wildlife trade monitoring network.
These records comprise 967 seizures including massive quantities of ivory, tiger
skins, live reptiles, and other endangered wildlife and wildlife products. Most
seizures originate in Southeast Asia, a recently identified hotspot for future
emerging infectious diseases. To date, regulation and enforcement have been insufficient
to effectively control the global trade in illegal wildlife at national and international
scales. Effective control will require a multi-pronged approach including community-scale
education and empowering local people to value wildlife, coordinated international
regulation, and a greater allocation of national resources to on-the-ground enforcement.
- Griffithsin (GRFT) is a red alga-derived lectin with demonstrated broad spectrum
antiviral activity against enveloped viruses, including severe acute respiratory
syndrome–Coronavirus (SARS-CoV), Japanese encephalitis virus (JEV), hepatitis
C virus (HCV), and herpes simplex virus-2 (HSV-2). However, its pharmacokinetic
profile remains largely undefined. Here, Sprague Dawley rats were administered
a single dose of GRFT at 10 or 20 mg/kg by intravenous, oral, and subcutaneous
routes, respectively, and serum GRFT levels were measured at select time points.
In addition, the potential for systemic accumulation after oral dosing was assessed
in rats after 10 daily treatments with GRFT (20 or 40 mg/kg). We found that parenterally-administered
GRFT in rats displayed a complex elimination profile, which varied according to
administration routes. However, GRFT was not orally bioavailable, even after chronic
treatment. Nonetheless, active GRFT capable of neutralizing HIV-Env pseudoviruses
was detected in rat fecal extracts after chronic oral dosing. These findings support
further evaluation of GRFT for pre-exposure prophylaxis against emerging epidemics
for which specific therapeutics are not available, including systemic and enteric
infections caused by susceptible enveloped viruses. In addition, GRFT should be
considered for antiviral therapy and the prevention of rectal transmission of
HIV-1 and other susceptible viruses.
---
# SentenceTransformer based on nreimers/MiniLM-L6-H384-uncased
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nreimers/MiniLM-L6-H384-uncased](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nreimers/MiniLM-L6-H384-uncased](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) <!-- at revision 3276f0fac9d818781d7a1327b3ff818fc4e643c0 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Summarizing the Evidence on the International Trade in Illegal Wildlife',
'The global trade in illegal wildlife is a multi-billion dollar industry that threatens biodiversity and acts as a potential avenue for invasive species and disease spread. Despite the broad-sweeping implications of illegal wildlife sales, scientists have yet to describe the scope and scale of the trade. Here, we provide the most thorough and current description of the illegal wildlife trade using 12 years of seizure records compiled by TRAFFIC, the wildlife trade monitoring network. These records comprise 967 seizures including massive quantities of ivory, tiger skins, live reptiles, and other endangered wildlife and wildlife products. Most seizures originate in Southeast Asia, a recently identified hotspot for future emerging infectious diseases. To date, regulation and enforcement have been insufficient to effectively control the global trade in illegal wildlife at national and international scales. Effective control will require a multi-pronged approach including community-scale education and empowering local people to value wildlife, coordinated international regulation, and a greater allocation of national resources to on-the-ground enforcement.',
'This paper proposes a method to represent classifiers or learned regression functions using an OWL ontology. Also proposed are methods for finding an appropriate learned function to answer a simple query. The ontology standardizes variable names and dependence properties, so that feature values can be given by users or found on the semantic web.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 730,454 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 15.55 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 195.91 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:-----------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>A parallel algorithm for constructing independent spanning trees in twisted cubes</code> | <code>A long-standing conjecture mentions that a kk-connected graph GG admits kk independent spanning trees (ISTs for short) rooted at an arbitrary node of GG. An nn-dimensional twisted cube, denoted by TQnTQn, is a variation of hypercube with connectivity nn and has many features superior to those of hypercube. Yang (2010) first proposed an algorithm to construct nn edge-disjoint spanning trees in TQnTQn for any odd integer n⩾3n⩾3 and showed that half of them are ISTs. At a later stage, Wang et al. (2012) inferred that the above conjecture in affirmative for TQnTQn by providing an O(NlogN)O(NlogN) time algorithm to construct nn ISTs, where N=2nN=2n is the number of nodes in TQnTQn. However, this algorithm is executed in a recursive fashion and thus is hard to be parallelized. In this paper, we revisit the problem of constructing ISTs in twisted cubes and present a non-recursive algorithm. Our approach can be fully parallelized to make the use of all nodes of TQnTQn as processors for computation in such a way that each node can determine its parent in all spanning trees directly by referring its address and tree indices in O(logN)O(logN) time.</code> |
| <code>A Novel Method for Separating and Locating Multiple Partial Discharge Sources in a Substation</code> | <code>To separate and locate multi-partial discharge (PD) sources in a substation, the use of spectrum differences of ultra-high frequency signals radiated from various sources as characteristic parameters has been previously reported. However, the separation success rate was poor when signal-to-noise ratio was low, and the localization result was a coordinate on two-dimensional plane. In this paper, a novel method is proposed to improve the separation rate and the localization accuracy. A directional measuring platform is built using two directional antennas. The time delay (TD) of the signals captured by the antennas is calculated, and TD sequences are obtained by rotating the platform at different angles. The sequences are separated with the TD distribution feature, and the directions of the multi-PD sources are calculated. The PD sources are located by directions using the error probability method. To verify the method, a simulated model with three PD sources was established by XFdtd. Simulation results show that the separation rate is increased from 71% to 95% compared with the previous method, and an accurate three-dimensional localization result was obtained. A field test with two PD sources was carried out, and the sources were separated and located accurately by the proposed method.</code> |
| <code>Every ternary permutation constraint satisfaction problem parameterized above average has a kernel with a quadratic number of variables</code> | <code>A ternary Permutation-CSP is specified by a subset @P of the symmetric group S"3. An instance of such a problem consists of a set of variables V and a multiset of constraints, which are ordered triples of distinct variables of V. The objective is to find a linear ordering @a of V that maximizes the number of triples whose rearrangement (under @a) follows a permutation in @P. We prove that every ternary Permutation-CSP parameterized above average has a kernel with a quadratic number of variables.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `num_train_epochs`: 5
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss |
|:------:|:------:|:-------------:|
| 0.0055 | 500 | 1.6701 |
| 0.0110 | 1000 | 0.8225 |
| 0.0164 | 1500 | 0.3883 |
| 0.0219 | 2000 | 0.2685 |
| 0.0274 | 2500 | 0.2349 |
| 0.0329 | 3000 | 0.1685 |
| 0.0383 | 3500 | 0.1409 |
| 0.0438 | 4000 | 0.1262 |
| 0.0493 | 4500 | 0.1195 |
| 0.0548 | 5000 | 0.1044 |
| 0.0602 | 5500 | 0.0989 |
| 0.0657 | 6000 | 0.0787 |
| 0.0712 | 6500 | 0.0895 |
| 0.0767 | 7000 | 0.0708 |
| 0.0821 | 7500 | 0.0834 |
| 0.0876 | 8000 | 0.0634 |
| 0.0931 | 8500 | 0.0643 |
| 0.0986 | 9000 | 0.0567 |
| 0.1040 | 9500 | 0.0646 |
| 0.1095 | 10000 | 0.0607 |
| 0.1150 | 10500 | 0.0564 |
| 0.1205 | 11000 | 0.068 |
| 0.1259 | 11500 | 0.0536 |
| 0.1314 | 12000 | 0.0594 |
| 0.1369 | 12500 | 0.057 |
| 0.1424 | 13000 | 0.0555 |
| 0.1479 | 13500 | 0.0485 |
| 0.1533 | 14000 | 0.0528 |
| 0.1588 | 14500 | 0.0478 |
| 0.1643 | 15000 | 0.0586 |
| 0.1698 | 15500 | 0.0539 |
| 0.1752 | 16000 | 0.0432 |
| 0.1807 | 16500 | 0.0542 |
| 0.1862 | 17000 | 0.0536 |
| 0.1917 | 17500 | 0.0492 |
| 0.1971 | 18000 | 0.0427 |
| 0.2026 | 18500 | 0.0489 |
| 0.2081 | 19000 | 0.0502 |
| 0.2136 | 19500 | 0.0432 |
| 0.2190 | 20000 | 0.0459 |
| 0.2245 | 20500 | 0.0376 |
| 0.2300 | 21000 | 0.0489 |
| 0.2355 | 21500 | 0.0515 |
| 0.2409 | 22000 | 0.0429 |
| 0.2464 | 22500 | 0.0417 |
| 0.2519 | 23000 | 0.0478 |
| 0.2574 | 23500 | 0.0359 |
| 0.2628 | 24000 | 0.0452 |
| 0.2683 | 24500 | 0.0443 |
| 0.2738 | 25000 | 0.0409 |
| 0.2793 | 25500 | 0.0421 |
| 0.2848 | 26000 | 0.0393 |
| 0.2902 | 26500 | 0.0409 |
| 0.2957 | 27000 | 0.032 |
| 0.3012 | 27500 | 0.0468 |
| 0.3067 | 28000 | 0.0285 |
| 0.3121 | 28500 | 0.0311 |
| 0.3176 | 29000 | 0.0304 |
| 0.3231 | 29500 | 0.0349 |
| 0.3286 | 30000 | 0.0352 |
| 0.3340 | 30500 | 0.0367 |
| 0.3395 | 31000 | 0.0385 |
| 0.3450 | 31500 | 0.0325 |
| 0.3505 | 32000 | 0.0302 |
| 0.3559 | 32500 | 0.0393 |
| 0.3614 | 33000 | 0.032 |
| 0.3669 | 33500 | 0.0263 |
| 0.3724 | 34000 | 0.0343 |
| 0.3778 | 34500 | 0.0349 |
| 0.3833 | 35000 | 0.0282 |
| 0.3888 | 35500 | 0.034 |
| 0.3943 | 36000 | 0.0376 |
| 0.3998 | 36500 | 0.0265 |
| 0.4052 | 37000 | 0.0267 |
| 0.4107 | 37500 | 0.0241 |
| 0.4162 | 38000 | 0.033 |
| 0.4217 | 38500 | 0.0323 |
| 0.4271 | 39000 | 0.0278 |
| 0.4326 | 39500 | 0.025 |
| 0.4381 | 40000 | 0.0363 |
| 0.4436 | 40500 | 0.0312 |
| 0.4490 | 41000 | 0.0307 |
| 0.4545 | 41500 | 0.0305 |
| 0.4600 | 42000 | 0.028 |
| 0.4655 | 42500 | 0.0279 |
| 0.4709 | 43000 | 0.0265 |
| 0.4764 | 43500 | 0.0262 |
| 0.4819 | 44000 | 0.0308 |
| 0.4874 | 44500 | 0.0282 |
| 0.4928 | 45000 | 0.0243 |
| 0.4983 | 45500 | 0.0236 |
| 0.5038 | 46000 | 0.02 |
| 0.5093 | 46500 | 0.0254 |
| 0.5147 | 47000 | 0.0275 |
| 0.5202 | 47500 | 0.0309 |
| 0.5257 | 48000 | 0.031 |
| 0.5312 | 48500 | 0.0271 |
| 0.5367 | 49000 | 0.0218 |
| 0.5421 | 49500 | 0.0249 |
| 0.5476 | 50000 | 0.0285 |
| 0.5531 | 50500 | 0.03 |
| 0.5586 | 51000 | 0.0284 |
| 0.5640 | 51500 | 0.0258 |
| 0.5695 | 52000 | 0.0228 |
| 0.5750 | 52500 | 0.0305 |
| 0.5805 | 53000 | 0.0234 |
| 0.5859 | 53500 | 0.0209 |
| 0.5914 | 54000 | 0.0341 |
| 0.5969 | 54500 | 0.0269 |
| 0.6024 | 55000 | 0.0267 |
| 0.6078 | 55500 | 0.0245 |
| 0.6133 | 56000 | 0.0263 |
| 0.6188 | 56500 | 0.0195 |
| 0.6243 | 57000 | 0.0209 |
| 0.6297 | 57500 | 0.0313 |
| 0.6352 | 58000 | 0.0247 |
| 0.6407 | 58500 | 0.0285 |
| 0.6462 | 59000 | 0.0301 |
| 0.6516 | 59500 | 0.0227 |
| 0.6571 | 60000 | 0.0235 |
| 0.6626 | 60500 | 0.0272 |
| 0.6681 | 61000 | 0.025 |
| 0.6736 | 61500 | 0.0276 |
| 0.6790 | 62000 | 0.0289 |
| 0.6845 | 62500 | 0.0232 |
| 0.6900 | 63000 | 0.0258 |
| 0.6955 | 63500 | 0.0254 |
| 0.7009 | 64000 | 0.0205 |
| 0.7064 | 64500 | 0.0216 |
| 0.7119 | 65000 | 0.0304 |
| 0.7174 | 65500 | 0.0234 |
| 0.7228 | 66000 | 0.0233 |
| 0.7283 | 66500 | 0.0239 |
| 0.7338 | 67000 | 0.0166 |
| 0.7393 | 67500 | 0.0211 |
| 0.7447 | 68000 | 0.0212 |
| 0.7502 | 68500 | 0.0247 |
| 0.7557 | 69000 | 0.023 |
| 0.7612 | 69500 | 0.0261 |
| 0.7666 | 70000 | 0.0204 |
| 0.7721 | 70500 | 0.026 |
| 0.7776 | 71000 | 0.0299 |
| 0.7831 | 71500 | 0.0183 |
| 0.7885 | 72000 | 0.0228 |
| 0.7940 | 72500 | 0.0181 |
| 0.7995 | 73000 | 0.0237 |
| 0.8050 | 73500 | 0.0237 |
| 0.8105 | 74000 | 0.0158 |
| 0.8159 | 74500 | 0.0222 |
| 0.8214 | 75000 | 0.0196 |
| 0.8269 | 75500 | 0.0242 |
| 0.8324 | 76000 | 0.0218 |
| 0.8378 | 76500 | 0.0201 |
| 0.8433 | 77000 | 0.026 |
| 0.8488 | 77500 | 0.0232 |
| 0.8543 | 78000 | 0.0254 |
| 0.8597 | 78500 | 0.0218 |
| 0.8652 | 79000 | 0.0219 |
| 0.8707 | 79500 | 0.0255 |
| 0.8762 | 80000 | 0.0201 |
| 0.8816 | 80500 | 0.0301 |
| 0.8871 | 81000 | 0.0275 |
| 0.8926 | 81500 | 0.018 |
| 0.8981 | 82000 | 0.028 |
| 0.9035 | 82500 | 0.0223 |
| 0.9090 | 83000 | 0.0201 |
| 0.9145 | 83500 | 0.0299 |
| 0.9200 | 84000 | 0.0251 |
| 0.9254 | 84500 | 0.0203 |
| 0.9309 | 85000 | 0.0209 |
| 0.9364 | 85500 | 0.0236 |
| 0.9419 | 86000 | 0.0191 |
| 0.9474 | 86500 | 0.0168 |
| 0.9528 | 87000 | 0.017 |
| 0.9583 | 87500 | 0.0201 |
| 0.9638 | 88000 | 0.0171 |
| 0.9693 | 88500 | 0.0217 |
| 0.9747 | 89000 | 0.0208 |
| 0.9802 | 89500 | 0.0157 |
| 0.9857 | 90000 | 0.0218 |
| 0.9912 | 90500 | 0.021 |
| 0.9966 | 91000 | 0.0159 |
| 1.0021 | 91500 | 0.0189 |
| 1.0076 | 92000 | 0.0182 |
| 1.0131 | 92500 | 0.0206 |
| 1.0185 | 93000 | 0.0179 |
| 1.0240 | 93500 | 0.0168 |
| 1.0295 | 94000 | 0.019 |
| 1.0350 | 94500 | 0.0173 |
| 1.0404 | 95000 | 0.0172 |
| 1.0459 | 95500 | 0.0187 |
| 1.0514 | 96000 | 0.0199 |
| 1.0569 | 96500 | 0.0202 |
| 1.0624 | 97000 | 0.0198 |
| 1.0678 | 97500 | 0.0157 |
| 1.0733 | 98000 | 0.0178 |
| 1.0788 | 98500 | 0.0147 |
| 1.0843 | 99000 | 0.0152 |
| 1.0897 | 99500 | 0.0152 |
| 1.0952 | 100000 | 0.0126 |
| 1.1007 | 100500 | 0.0115 |
| 1.1062 | 101000 | 0.0122 |
| 1.1116 | 101500 | 0.0097 |
| 1.1171 | 102000 | 0.0149 |
| 1.1226 | 102500 | 0.0151 |
| 1.1281 | 103000 | 0.0134 |
| 1.1335 | 103500 | 0.0157 |
| 1.1390 | 104000 | 0.0141 |
| 1.1445 | 104500 | 0.0139 |
| 1.1500 | 105000 | 0.0149 |
| 1.1554 | 105500 | 0.0103 |
| 1.1609 | 106000 | 0.0138 |
| 1.1664 | 106500 | 0.0116 |
| 1.1719 | 107000 | 0.0146 |
| 1.1773 | 107500 | 0.0168 |
| 1.1828 | 108000 | 0.0166 |
| 1.1883 | 108500 | 0.0136 |
| 1.1938 | 109000 | 0.0103 |
| 1.1993 | 109500 | 0.0128 |
| 1.2047 | 110000 | 0.0112 |
| 1.2102 | 110500 | 0.0103 |
| 1.2157 | 111000 | 0.0133 |
| 1.2212 | 111500 | 0.0118 |
| 1.2266 | 112000 | 0.009 |
| 1.2321 | 112500 | 0.0151 |
| 1.2376 | 113000 | 0.0146 |
| 1.2431 | 113500 | 0.0143 |
| 1.2485 | 114000 | 0.01 |
| 1.2540 | 114500 | 0.0147 |
| 1.2595 | 115000 | 0.011 |
| 1.2650 | 115500 | 0.0121 |
| 1.2704 | 116000 | 0.0117 |
| 1.2759 | 116500 | 0.0151 |
| 1.2814 | 117000 | 0.0143 |
| 1.2869 | 117500 | 0.0163 |
| 1.2923 | 118000 | 0.0135 |
| 1.2978 | 118500 | 0.0118 |
| 1.3033 | 119000 | 0.0129 |
| 1.3088 | 119500 | 0.0062 |
| 1.3142 | 120000 | 0.0127 |
| 1.3197 | 120500 | 0.014 |
| 1.3252 | 121000 | 0.0131 |
| 1.3307 | 121500 | 0.0162 |
| 1.3362 | 122000 | 0.0107 |
| 1.3416 | 122500 | 0.0125 |
| 1.3471 | 123000 | 0.0136 |
| 1.3526 | 123500 | 0.0112 |
| 1.3581 | 124000 | 0.0126 |
| 1.3635 | 124500 | 0.0079 |
| 1.3690 | 125000 | 0.0104 |
| 1.3745 | 125500 | 0.0137 |
| 1.3800 | 126000 | 0.0075 |
| 1.3854 | 126500 | 0.0108 |
| 1.3909 | 127000 | 0.0087 |
| 1.3964 | 127500 | 0.0138 |
| 1.4019 | 128000 | 0.0056 |
| 1.4073 | 128500 | 0.0067 |
| 1.4128 | 129000 | 0.0103 |
| 1.4183 | 129500 | 0.0102 |
| 1.4238 | 130000 | 0.0119 |
| 1.4292 | 130500 | 0.0094 |
| 1.4347 | 131000 | 0.0075 |
| 1.4402 | 131500 | 0.0146 |
| 1.4457 | 132000 | 0.0103 |
| 1.4511 | 132500 | 0.0123 |
| 1.4566 | 133000 | 0.0107 |
| 1.4621 | 133500 | 0.0071 |
| 1.4676 | 134000 | 0.0087 |
| 1.4731 | 134500 | 0.0072 |
| 1.4785 | 135000 | 0.0094 |
| 1.4840 | 135500 | 0.0083 |
| 1.4895 | 136000 | 0.0104 |
| 1.4950 | 136500 | 0.0076 |
| 1.5004 | 137000 | 0.006 |
| 1.5059 | 137500 | 0.0085 |
| 1.5114 | 138000 | 0.0061 |
| 1.5169 | 138500 | 0.0106 |
| 1.5223 | 139000 | 0.0088 |
| 1.5278 | 139500 | 0.0111 |
| 1.5333 | 140000 | 0.0094 |
| 1.5388 | 140500 | 0.0079 |
| 1.5442 | 141000 | 0.0095 |
| 1.5497 | 141500 | 0.0098 |
| 1.5552 | 142000 | 0.0139 |
| 1.5607 | 142500 | 0.0085 |
| 1.5661 | 143000 | 0.0094 |
| 1.5716 | 143500 | 0.0088 |
| 1.5771 | 144000 | 0.0092 |
| 1.5826 | 144500 | 0.0071 |
| 1.5880 | 145000 | 0.0101 |
| 1.5935 | 145500 | 0.011 |
| 1.5990 | 146000 | 0.0097 |
| 1.6045 | 146500 | 0.0071 |
| 1.6100 | 147000 | 0.0114 |
| 1.6154 | 147500 | 0.0087 |
| 1.6209 | 148000 | 0.0075 |
| 1.6264 | 148500 | 0.0039 |
| 1.6319 | 149000 | 0.0091 |
| 1.6373 | 149500 | 0.0117 |
| 1.6428 | 150000 | 0.01 |
| 1.6483 | 150500 | 0.0099 |
| 1.6538 | 151000 | 0.0069 |
| 1.6592 | 151500 | 0.0084 |
| 1.6647 | 152000 | 0.0118 |
| 1.6702 | 152500 | 0.0078 |
| 1.6757 | 153000 | 0.0067 |
| 1.6811 | 153500 | 0.0133 |
| 1.6866 | 154000 | 0.0079 |
| 1.6921 | 154500 | 0.0092 |
| 1.6976 | 155000 | 0.0069 |
| 1.7030 | 155500 | 0.008 |
| 1.7085 | 156000 | 0.0124 |
| 1.7140 | 156500 | 0.0112 |
| 1.7195 | 157000 | 0.0074 |
| 1.7249 | 157500 | 0.0091 |
| 1.7304 | 158000 | 0.0088 |
| 1.7359 | 158500 | 0.0061 |
| 1.7414 | 159000 | 0.0089 |
| 1.7469 | 159500 | 0.0082 |
| 1.7523 | 160000 | 0.0103 |
| 1.7578 | 160500 | 0.0094 |
| 1.7633 | 161000 | 0.0073 |
| 1.7688 | 161500 | 0.0116 |
| 1.7742 | 162000 | 0.0112 |
| 1.7797 | 162500 | 0.0057 |
| 1.7852 | 163000 | 0.0075 |
| 1.7907 | 163500 | 0.0062 |
| 1.7961 | 164000 | 0.0046 |
| 1.8016 | 164500 | 0.0091 |
| 1.8071 | 165000 | 0.0066 |
| 1.8126 | 165500 | 0.0051 |
| 1.8180 | 166000 | 0.0066 |
| 1.8235 | 166500 | 0.0093 |
| 1.8290 | 167000 | 0.0079 |
| 1.8345 | 167500 | 0.0067 |
| 1.8399 | 168000 | 0.007 |
| 1.8454 | 168500 | 0.0133 |
| 1.8509 | 169000 | 0.0071 |
| 1.8564 | 169500 | 0.0091 |
| 1.8619 | 170000 | 0.0067 |
| 1.8673 | 170500 | 0.0091 |
| 1.8728 | 171000 | 0.0103 |
| 1.8783 | 171500 | 0.0058 |
| 1.8838 | 172000 | 0.0116 |
| 1.8892 | 172500 | 0.0089 |
| 1.8947 | 173000 | 0.0137 |
| 1.9002 | 173500 | 0.0065 |
| 1.9057 | 174000 | 0.0098 |
| 1.9111 | 174500 | 0.0083 |
| 1.9166 | 175000 | 0.0115 |
| 1.9221 | 175500 | 0.0083 |
| 1.9276 | 176000 | 0.0084 |
| 1.9330 | 176500 | 0.0091 |
| 1.9385 | 177000 | 0.0092 |
| 1.9440 | 177500 | 0.0054 |
| 1.9495 | 178000 | 0.0049 |
| 1.9549 | 178500 | 0.0072 |
| 1.9604 | 179000 | 0.0052 |
| 1.9659 | 179500 | 0.0063 |
| 1.9714 | 180000 | 0.0107 |
| 1.9768 | 180500 | 0.0061 |
| 1.9823 | 181000 | 0.0059 |
| 1.9878 | 181500 | 0.0067 |
| 1.9933 | 182000 | 0.0078 |
| 1.9988 | 182500 | 0.007 |
| 2.0042 | 183000 | 0.0065 |
| 2.0097 | 183500 | 0.0073 |
| 2.0152 | 184000 | 0.01 |
| 2.0207 | 184500 | 0.0072 |
| 2.0261 | 185000 | 0.0055 |
| 2.0316 | 185500 | 0.0087 |
| 2.0371 | 186000 | 0.0077 |
| 2.0426 | 186500 | 0.0067 |
| 2.0480 | 187000 | 0.008 |
| 2.0535 | 187500 | 0.0074 |
| 2.0590 | 188000 | 0.0072 |
| 2.0645 | 188500 | 0.0045 |
| 2.0699 | 189000 | 0.0082 |
| 2.0754 | 189500 | 0.0042 |
| 2.0809 | 190000 | 0.0076 |
| 2.0864 | 190500 | 0.0058 |
| 2.0918 | 191000 | 0.005 |
| 2.0973 | 191500 | 0.0047 |
| 2.1028 | 192000 | 0.0045 |
| 2.1083 | 192500 | 0.0043 |
| 2.1137 | 193000 | 0.0049 |
| 2.1192 | 193500 | 0.0058 |
| 2.1247 | 194000 | 0.0081 |
| 2.1302 | 194500 | 0.0057 |
| 2.1357 | 195000 | 0.0047 |
| 2.1411 | 195500 | 0.0073 |
| 2.1466 | 196000 | 0.0056 |
| 2.1521 | 196500 | 0.006 |
| 2.1576 | 197000 | 0.0061 |
| 2.1630 | 197500 | 0.0042 |
| 2.1685 | 198000 | 0.0057 |
| 2.1740 | 198500 | 0.0055 |
| 2.1795 | 199000 | 0.0053 |
| 2.1849 | 199500 | 0.0085 |
| 2.1904 | 200000 | 0.005 |
| 2.1959 | 200500 | 0.0055 |
| 2.2014 | 201000 | 0.0032 |
| 2.2068 | 201500 | 0.0054 |
| 2.2123 | 202000 | 0.0037 |
| 2.2178 | 202500 | 0.0046 |
| 2.2233 | 203000 | 0.0029 |
| 2.2287 | 203500 | 0.0043 |
| 2.2342 | 204000 | 0.0063 |
| 2.2397 | 204500 | 0.0064 |
| 2.2452 | 205000 | 0.0046 |
| 2.2506 | 205500 | 0.0061 |
| 2.2561 | 206000 | 0.0034 |
| 2.2616 | 206500 | 0.0046 |
| 2.2671 | 207000 | 0.0059 |
| 2.2726 | 207500 | 0.0044 |
| 2.2780 | 208000 | 0.0054 |
| 2.2835 | 208500 | 0.0049 |
| 2.2890 | 209000 | 0.0096 |
| 2.2945 | 209500 | 0.0045 |
| 2.2999 | 210000 | 0.0057 |
| 2.3054 | 210500 | 0.0032 |
| 2.3109 | 211000 | 0.0031 |
| 2.3164 | 211500 | 0.0043 |
| 2.3218 | 212000 | 0.0068 |
| 2.3273 | 212500 | 0.0048 |
| 2.3328 | 213000 | 0.0042 |
| 2.3383 | 213500 | 0.0068 |
| 2.3437 | 214000 | 0.0041 |
| 2.3492 | 214500 | 0.0042 |
| 2.3547 | 215000 | 0.0051 |
| 2.3602 | 215500 | 0.0049 |
| 2.3656 | 216000 | 0.0019 |
| 2.3711 | 216500 | 0.0039 |
| 2.3766 | 217000 | 0.0068 |
| 2.3821 | 217500 | 0.0033 |
| 2.3875 | 218000 | 0.0048 |
| 2.3930 | 218500 | 0.0052 |
| 2.3985 | 219000 | 0.0063 |
| 2.4040 | 219500 | 0.003 |
| 2.4095 | 220000 | 0.0036 |
| 2.4149 | 220500 | 0.004 |
| 2.4204 | 221000 | 0.006 |
| 2.4259 | 221500 | 0.0048 |
| 2.4314 | 222000 | 0.0037 |
| 2.4368 | 222500 | 0.0034 |
| 2.4423 | 223000 | 0.0049 |
| 2.4478 | 223500 | 0.0036 |
| 2.4533 | 224000 | 0.0046 |
| 2.4587 | 224500 | 0.0039 |
| 2.4642 | 225000 | 0.0021 |
| 2.4697 | 225500 | 0.0035 |
| 2.4752 | 226000 | 0.0034 |
| 2.4806 | 226500 | 0.003 |
| 2.4861 | 227000 | 0.0032 |
| 2.4916 | 227500 | 0.005 |
| 2.4971 | 228000 | 0.0025 |
| 2.5025 | 228500 | 0.0036 |
| 2.5080 | 229000 | 0.0021 |
| 2.5135 | 229500 | 0.0025 |
| 2.5190 | 230000 | 0.0036 |
| 2.5245 | 230500 | 0.0033 |
| 2.5299 | 231000 | 0.0049 |
| 2.5354 | 231500 | 0.0044 |
| 2.5409 | 232000 | 0.0029 |
| 2.5464 | 232500 | 0.0028 |
| 2.5518 | 233000 | 0.0091 |
| 2.5573 | 233500 | 0.004 |
| 2.5628 | 234000 | 0.0036 |
| 2.5683 | 234500 | 0.0029 |
| 2.5737 | 235000 | 0.0035 |
| 2.5792 | 235500 | 0.0038 |
| 2.5847 | 236000 | 0.0028 |
| 2.5902 | 236500 | 0.0041 |
| 2.5956 | 237000 | 0.0037 |
| 2.6011 | 237500 | 0.0031 |
| 2.6066 | 238000 | 0.0036 |
| 2.6121 | 238500 | 0.0052 |
| 2.6175 | 239000 | 0.0031 |
| 2.6230 | 239500 | 0.0023 |
| 2.6285 | 240000 | 0.0043 |
| 2.6340 | 240500 | 0.0027 |
| 2.6394 | 241000 | 0.0048 |
| 2.6449 | 241500 | 0.0046 |
| 2.6504 | 242000 | 0.0038 |
| 2.6559 | 242500 | 0.0033 |
| 2.6614 | 243000 | 0.003 |
| 2.6668 | 243500 | 0.0057 |
| 2.6723 | 244000 | 0.0044 |
| 2.6778 | 244500 | 0.0058 |
| 2.6833 | 245000 | 0.003 |
| 2.6887 | 245500 | 0.0042 |
| 2.6942 | 246000 | 0.0045 |
| 2.6997 | 246500 | 0.0031 |
| 2.7052 | 247000 | 0.0021 |
| 2.7106 | 247500 | 0.0043 |
| 2.7161 | 248000 | 0.0058 |
| 2.7216 | 248500 | 0.0041 |
| 2.7271 | 249000 | 0.0038 |
| 2.7325 | 249500 | 0.0019 |
| 2.7380 | 250000 | 0.0029 |
| 2.7435 | 250500 | 0.003 |
| 2.7490 | 251000 | 0.0038 |
| 2.7544 | 251500 | 0.004 |
| 2.7599 | 252000 | 0.0049 |
| 2.7654 | 252500 | 0.0039 |
| 2.7709 | 253000 | 0.005 |
| 2.7763 | 253500 | 0.0046 |
| 2.7818 | 254000 | 0.0025 |
| 2.7873 | 254500 | 0.0044 |
| 2.7928 | 255000 | 0.0023 |
| 2.7983 | 255500 | 0.0038 |
| 2.8037 | 256000 | 0.0032 |
| 2.8092 | 256500 | 0.0021 |
| 2.8147 | 257000 | 0.0023 |
| 2.8202 | 257500 | 0.0042 |
| 2.8256 | 258000 | 0.0042 |
| 2.8311 | 258500 | 0.0053 |
| 2.8366 | 259000 | 0.0021 |
| 2.8421 | 259500 | 0.0033 |
| 2.8475 | 260000 | 0.0047 |
| 2.8530 | 260500 | 0.0048 |
| 2.8585 | 261000 | 0.0022 |
| 2.8640 | 261500 | 0.0036 |
| 2.8694 | 262000 | 0.0034 |
| 2.8749 | 262500 | 0.0029 |
| 2.8804 | 263000 | 0.0038 |
| 2.8859 | 263500 | 0.0067 |
| 2.8913 | 264000 | 0.003 |
| 2.8968 | 264500 | 0.0049 |
| 2.9023 | 265000 | 0.0027 |
| 2.9078 | 265500 | 0.004 |
| 2.9132 | 266000 | 0.0042 |
| 2.9187 | 266500 | 0.0042 |
| 2.9242 | 267000 | 0.0038 |
| 2.9297 | 267500 | 0.0029 |
| 2.9352 | 268000 | 0.0039 |
| 2.9406 | 268500 | 0.0039 |
| 2.9461 | 269000 | 0.002 |
| 2.9516 | 269500 | 0.0022 |
| 2.9571 | 270000 | 0.002 |
| 2.9625 | 270500 | 0.003 |
| 2.9680 | 271000 | 0.0019 |
| 2.9735 | 271500 | 0.0044 |
| 2.9790 | 272000 | 0.0028 |
| 2.9844 | 272500 | 0.0031 |
| 2.9899 | 273000 | 0.0025 |
| 2.9954 | 273500 | 0.0021 |
| 3.0009 | 274000 | 0.0025 |
| 3.0063 | 274500 | 0.0038 |
| 3.0118 | 275000 | 0.0045 |
| 3.0173 | 275500 | 0.002 |
| 3.0228 | 276000 | 0.0035 |
| 3.0282 | 276500 | 0.0046 |
| 3.0337 | 277000 | 0.0033 |
| 3.0392 | 277500 | 0.002 |
| 3.0447 | 278000 | 0.0036 |
| 3.0501 | 278500 | 0.0025 |
| 3.0556 | 279000 | 0.0039 |
| 3.0611 | 279500 | 0.0029 |
| 3.0666 | 280000 | 0.004 |
| 3.0721 | 280500 | 0.0023 |
| 3.0775 | 281000 | 0.0019 |
| 3.0830 | 281500 | 0.0019 |
| 3.0885 | 282000 | 0.0027 |
| 3.0940 | 282500 | 0.0014 |
| 3.0994 | 283000 | 0.0019 |
| 3.1049 | 283500 | 0.0018 |
| 3.1104 | 284000 | 0.0016 |
| 3.1159 | 284500 | 0.0017 |
| 3.1213 | 285000 | 0.0049 |
| 3.1268 | 285500 | 0.0022 |
| 3.1323 | 286000 | 0.0023 |
| 3.1378 | 286500 | 0.0016 |
| 3.1432 | 287000 | 0.002 |
| 3.1487 | 287500 | 0.0025 |
| 3.1542 | 288000 | 0.0012 |
| 3.1597 | 288500 | 0.0021 |
| 3.1651 | 289000 | 0.0017 |
| 3.1706 | 289500 | 0.0019 |
| 3.1761 | 290000 | 0.0019 |
| 3.1816 | 290500 | 0.0042 |
| 3.1871 | 291000 | 0.0027 |
| 3.1925 | 291500 | 0.0011 |
| 3.1980 | 292000 | 0.002 |
| 3.2035 | 292500 | 0.0021 |
| 3.2090 | 293000 | 0.0015 |
| 3.2144 | 293500 | 0.0017 |
| 3.2199 | 294000 | 0.002 |
| 3.2254 | 294500 | 0.0012 |
| 3.2309 | 295000 | 0.0017 |
| 3.2363 | 295500 | 0.0029 |
| 3.2418 | 296000 | 0.0019 |
| 3.2473 | 296500 | 0.0017 |
| 3.2528 | 297000 | 0.0019 |
| 3.2582 | 297500 | 0.0012 |
| 3.2637 | 298000 | 0.0024 |
| 3.2692 | 298500 | 0.0017 |
| 3.2747 | 299000 | 0.0022 |
| 3.2801 | 299500 | 0.002 |
| 3.2856 | 300000 | 0.0028 |
| 3.2911 | 300500 | 0.0036 |
| 3.2966 | 301000 | 0.0015 |
| 3.3020 | 301500 | 0.0024 |
| 3.3075 | 302000 | 0.0015 |
| 3.3130 | 302500 | 0.0012 |
| 3.3185 | 303000 | 0.0022 |
| 3.3240 | 303500 | 0.0015 |
| 3.3294 | 304000 | 0.0023 |
| 3.3349 | 304500 | 0.0017 |
| 3.3404 | 305000 | 0.0021 |
| 3.3459 | 305500 | 0.0017 |
| 3.3513 | 306000 | 0.0015 |
| 3.3568 | 306500 | 0.0023 |
| 3.3623 | 307000 | 0.0014 |
| 3.3678 | 307500 | 0.0019 |
| 3.3732 | 308000 | 0.0017 |
| 3.3787 | 308500 | 0.0027 |
| 3.3842 | 309000 | 0.0016 |
| 3.3897 | 309500 | 0.0019 |
| 3.3951 | 310000 | 0.0037 |
| 3.4006 | 310500 | 0.0016 |
| 3.4061 | 311000 | 0.0012 |
| 3.4116 | 311500 | 0.0024 |
| 3.4170 | 312000 | 0.0016 |
| 3.4225 | 312500 | 0.0022 |
| 3.4280 | 313000 | 0.0015 |
| 3.4335 | 313500 | 0.0017 |
| 3.4389 | 314000 | 0.0015 |
| 3.4444 | 314500 | 0.0018 |
| 3.4499 | 315000 | 0.0015 |
| 3.4554 | 315500 | 0.0019 |
| 3.4609 | 316000 | 0.0009 |
| 3.4663 | 316500 | 0.001 |
| 3.4718 | 317000 | 0.001 |
| 3.4773 | 317500 | 0.0023 |
| 3.4828 | 318000 | 0.0012 |
| 3.4882 | 318500 | 0.0012 |
| 3.4937 | 319000 | 0.0011 |
| 3.4992 | 319500 | 0.0008 |
| 3.5047 | 320000 | 0.0018 |
| 3.5101 | 320500 | 0.0009 |
| 3.5156 | 321000 | 0.0016 |
| 3.5211 | 321500 | 0.0012 |
| 3.5266 | 322000 | 0.0015 |
| 3.5320 | 322500 | 0.0024 |
| 3.5375 | 323000 | 0.0016 |
| 3.5430 | 323500 | 0.0014 |
| 3.5485 | 324000 | 0.0014 |
| 3.5539 | 324500 | 0.0047 |
| 3.5594 | 325000 | 0.0013 |
| 3.5649 | 325500 | 0.0012 |
| 3.5704 | 326000 | 0.0013 |
| 3.5758 | 326500 | 0.0011 |
| 3.5813 | 327000 | 0.0011 |
| 3.5868 | 327500 | 0.0016 |
| 3.5923 | 328000 | 0.0022 |
| 3.5978 | 328500 | 0.0017 |
| 3.6032 | 329000 | 0.0012 |
| 3.6087 | 329500 | 0.002 |
| 3.6142 | 330000 | 0.0016 |
| 3.6197 | 330500 | 0.0009 |
| 3.6251 | 331000 | 0.0011 |
| 3.6306 | 331500 | 0.0019 |
| 3.6361 | 332000 | 0.0011 |
| 3.6416 | 332500 | 0.0021 |
| 3.6470 | 333000 | 0.0029 |
| 3.6525 | 333500 | 0.001 |
| 3.6580 | 334000 | 0.0016 |
| 3.6635 | 334500 | 0.0016 |
| 3.6689 | 335000 | 0.0036 |
| 3.6744 | 335500 | 0.0012 |
| 3.6799 | 336000 | 0.003 |
| 3.6854 | 336500 | 0.0014 |
| 3.6908 | 337000 | 0.0018 |
| 3.6963 | 337500 | 0.001 |
| 3.7018 | 338000 | 0.001 |
| 3.7073 | 338500 | 0.0016 |
| 3.7127 | 339000 | 0.0025 |
| 3.7182 | 339500 | 0.001 |
| 3.7237 | 340000 | 0.0018 |
| 3.7292 | 340500 | 0.0015 |
| 3.7347 | 341000 | 0.001 |
| 3.7401 | 341500 | 0.0009 |
| 3.7456 | 342000 | 0.0013 |
| 3.7511 | 342500 | 0.0014 |
| 3.7566 | 343000 | 0.0013 |
| 3.7620 | 343500 | 0.0011 |
| 3.7675 | 344000 | 0.0026 |
| 3.7730 | 344500 | 0.0014 |
| 3.7785 | 345000 | 0.0021 |
| 3.7839 | 345500 | 0.0015 |
| 3.7894 | 346000 | 0.0013 |
| 3.7949 | 346500 | 0.0013 |
| 3.8004 | 347000 | 0.0019 |
| 3.8058 | 347500 | 0.0009 |
| 3.8113 | 348000 | 0.0009 |
| 3.8168 | 348500 | 0.0014 |
| 3.8223 | 349000 | 0.0012 |
| 3.8277 | 349500 | 0.0032 |
| 3.8332 | 350000 | 0.0015 |
| 3.8387 | 350500 | 0.0011 |
| 3.8442 | 351000 | 0.002 |
| 3.8497 | 351500 | 0.0012 |
| 3.8551 | 352000 | 0.0026 |
| 3.8606 | 352500 | 0.001 |
| 3.8661 | 353000 | 0.0018 |
| 3.8716 | 353500 | 0.0014 |
| 3.8770 | 354000 | 0.001 |
| 3.8825 | 354500 | 0.0018 |
| 3.8880 | 355000 | 0.0027 |
| 3.8935 | 355500 | 0.0027 |
| 3.8989 | 356000 | 0.0011 |
| 3.9044 | 356500 | 0.0024 |
| 3.9099 | 357000 | 0.0012 |
| 3.9154 | 357500 | 0.0018 |
| 3.9208 | 358000 | 0.0012 |
| 3.9263 | 358500 | 0.0015 |
| 3.9318 | 359000 | 0.0015 |
| 3.9373 | 359500 | 0.0018 |
| 3.9427 | 360000 | 0.0017 |
| 3.9482 | 360500 | 0.0009 |
| 3.9537 | 361000 | 0.001 |
| 3.9592 | 361500 | 0.0013 |
| 3.9646 | 362000 | 0.0008 |
| 3.9701 | 362500 | 0.0018 |
| 3.9756 | 363000 | 0.0027 |
| 3.9811 | 363500 | 0.0009 |
| 3.9866 | 364000 | 0.0008 |
| 3.9920 | 364500 | 0.001 |
| 3.9975 | 365000 | 0.0009 |
| 4.0030 | 365500 | 0.0012 |
| 4.0085 | 366000 | 0.0011 |
| 4.0139 | 366500 | 0.0023 |
| 4.0194 | 367000 | 0.0023 |
| 4.0249 | 367500 | 0.0012 |
| 4.0304 | 368000 | 0.0018 |
| 4.0358 | 368500 | 0.0013 |
| 4.0413 | 369000 | 0.0009 |
| 4.0468 | 369500 | 0.0016 |
| 4.0523 | 370000 | 0.0011 |
| 4.0577 | 370500 | 0.0011 |
| 4.0632 | 371000 | 0.0009 |
| 4.0687 | 371500 | 0.0012 |
| 4.0742 | 372000 | 0.0011 |
| 4.0796 | 372500 | 0.0008 |
| 4.0851 | 373000 | 0.001 |
| 4.0906 | 373500 | 0.0008 |
| 4.0961 | 374000 | 0.0009 |
| 4.1015 | 374500 | 0.0008 |
| 4.1070 | 375000 | 0.0008 |
| 4.1125 | 375500 | 0.0008 |
| 4.1180 | 376000 | 0.0009 |
| 4.1235 | 376500 | 0.0021 |
| 4.1289 | 377000 | 0.0007 |
| 4.1344 | 377500 | 0.0014 |
| 4.1399 | 378000 | 0.0008 |
| 4.1454 | 378500 | 0.0015 |
| 4.1508 | 379000 | 0.0008 |
| 4.1563 | 379500 | 0.0008 |
| 4.1618 | 380000 | 0.0015 |
| 4.1673 | 380500 | 0.0008 |
| 4.1727 | 381000 | 0.0009 |
| 4.1782 | 381500 | 0.0018 |
| 4.1837 | 382000 | 0.0013 |
| 4.1892 | 382500 | 0.0012 |
| 4.1946 | 383000 | 0.0008 |
| 4.2001 | 383500 | 0.0008 |
| 4.2056 | 384000 | 0.0008 |
| 4.2111 | 384500 | 0.0008 |
| 4.2165 | 385000 | 0.001 |
| 4.2220 | 385500 | 0.0008 |
| 4.2275 | 386000 | 0.0008 |
| 4.2330 | 386500 | 0.0009 |
| 4.2384 | 387000 | 0.0008 |
| 4.2439 | 387500 | 0.0008 |
| 4.2494 | 388000 | 0.0011 |
| 4.2549 | 388500 | 0.0009 |
| 4.2604 | 389000 | 0.0007 |
| 4.2658 | 389500 | 0.001 |
| 4.2713 | 390000 | 0.0007 |
| 4.2768 | 390500 | 0.0011 |
| 4.2823 | 391000 | 0.0007 |
| 4.2877 | 391500 | 0.0019 |
| 4.2932 | 392000 | 0.0009 |
| 4.2987 | 392500 | 0.0011 |
| 4.3042 | 393000 | 0.0008 |
| 4.3096 | 393500 | 0.0006 |
| 4.3151 | 394000 | 0.0009 |
| 4.3206 | 394500 | 0.001 |
| 4.3261 | 395000 | 0.0007 |
| 4.3315 | 395500 | 0.0011 |
| 4.3370 | 396000 | 0.0008 |
| 4.3425 | 396500 | 0.0007 |
| 4.3480 | 397000 | 0.0007 |
| 4.3534 | 397500 | 0.0007 |
| 4.3589 | 398000 | 0.001 |
| 4.3644 | 398500 | 0.0008 |
| 4.3699 | 399000 | 0.001 |
| 4.3753 | 399500 | 0.0014 |
| 4.3808 | 400000 | 0.0006 |
| 4.3863 | 400500 | 0.0006 |
| 4.3918 | 401000 | 0.001 |
| 4.3973 | 401500 | 0.002 |
| 4.4027 | 402000 | 0.0006 |
| 4.4082 | 402500 | 0.0007 |
| 4.4137 | 403000 | 0.001 |
| 4.4192 | 403500 | 0.0008 |
| 4.4246 | 404000 | 0.0008 |
| 4.4301 | 404500 | 0.0009 |
| 4.4356 | 405000 | 0.0005 |
| 4.4411 | 405500 | 0.0008 |
| 4.4465 | 406000 | 0.0008 |
| 4.4520 | 406500 | 0.0007 |
| 4.4575 | 407000 | 0.0006 |
| 4.4630 | 407500 | 0.0006 |
| 4.4684 | 408000 | 0.0006 |
| 4.4739 | 408500 | 0.0006 |
| 4.4794 | 409000 | 0.0009 |
| 4.4849 | 409500 | 0.0007 |
| 4.4903 | 410000 | 0.0009 |
| 4.4958 | 410500 | 0.0006 |
| 4.5013 | 411000 | 0.0007 |
| 4.5068 | 411500 | 0.0006 |
| 4.5122 | 412000 | 0.0007 |
| 4.5177 | 412500 | 0.0006 |
| 4.5232 | 413000 | 0.0008 |
| 4.5287 | 413500 | 0.0007 |
| 4.5342 | 414000 | 0.0013 |
| 4.5396 | 414500 | 0.0006 |
| 4.5451 | 415000 | 0.0009 |
| 4.5506 | 415500 | 0.0015 |
| 4.5561 | 416000 | 0.0014 |
| 4.5615 | 416500 | 0.0007 |
| 4.5670 | 417000 | 0.0007 |
| 4.5725 | 417500 | 0.0008 |
| 4.5780 | 418000 | 0.0008 |
| 4.5834 | 418500 | 0.0007 |
| 4.5889 | 419000 | 0.0006 |
| 4.5944 | 419500 | 0.0008 |
| 4.5999 | 420000 | 0.0008 |
| 4.6053 | 420500 | 0.0006 |
| 4.6108 | 421000 | 0.001 |
| 4.6163 | 421500 | 0.0005 |
| 4.6218 | 422000 | 0.0007 |
| 4.6272 | 422500 | 0.0006 |
| 4.6327 | 423000 | 0.0007 |
| 4.6382 | 423500 | 0.0009 |
| 4.6437 | 424000 | 0.0014 |
| 4.6492 | 424500 | 0.0008 |
| 4.6546 | 425000 | 0.0006 |
| 4.6601 | 425500 | 0.0006 |
| 4.6656 | 426000 | 0.0016 |
| 4.6711 | 426500 | 0.0006 |
| 4.6765 | 427000 | 0.0006 |
| 4.6820 | 427500 | 0.0012 |
| 4.6875 | 428000 | 0.0007 |
| 4.6930 | 428500 | 0.0009 |
| 4.6984 | 429000 | 0.0006 |
| 4.7039 | 429500 | 0.0005 |
| 4.7094 | 430000 | 0.0007 |
| 4.7149 | 430500 | 0.0007 |
| 4.7203 | 431000 | 0.0006 |
| 4.7258 | 431500 | 0.0006 |
| 4.7313 | 432000 | 0.0006 |
| 4.7368 | 432500 | 0.0006 |
| 4.7422 | 433000 | 0.0006 |
| 4.7477 | 433500 | 0.0006 |
| 4.7532 | 434000 | 0.0006 |
| 4.7587 | 434500 | 0.0006 |
| 4.7641 | 435000 | 0.0006 |
| 4.7696 | 435500 | 0.0018 |
| 4.7751 | 436000 | 0.0009 |
| 4.7806 | 436500 | 0.0007 |
| 4.7861 | 437000 | 0.0007 |
| 4.7915 | 437500 | 0.0005 |
| 4.7970 | 438000 | 0.0009 |
| 4.8025 | 438500 | 0.0013 |
| 4.8080 | 439000 | 0.0007 |
| 4.8134 | 439500 | 0.0006 |
| 4.8189 | 440000 | 0.0007 |
| 4.8244 | 440500 | 0.001 |
| 4.8299 | 441000 | 0.0019 |
| 4.8353 | 441500 | 0.0006 |
| 4.8408 | 442000 | 0.0006 |
| 4.8463 | 442500 | 0.0009 |
| 4.8518 | 443000 | 0.0006 |
| 4.8572 | 443500 | 0.001 |
| 4.8627 | 444000 | 0.0011 |
| 4.8682 | 444500 | 0.0007 |
| 4.8737 | 445000 | 0.0007 |
| 4.8791 | 445500 | 0.0007 |
| 4.8846 | 446000 | 0.0018 |
| 4.8901 | 446500 | 0.0007 |
| 4.8956 | 447000 | 0.0012 |
| 4.9010 | 447500 | 0.0007 |
| 4.9065 | 448000 | 0.0009 |
| 4.9120 | 448500 | 0.0007 |
| 4.9175 | 449000 | 0.001 |
| 4.9230 | 449500 | 0.0007 |
| 4.9284 | 450000 | 0.0007 |
| 4.9339 | 450500 | 0.0007 |
| 4.9394 | 451000 | 0.0011 |
| 4.9449 | 451500 | 0.0005 |
| 4.9503 | 452000 | 0.0007 |
| 4.9558 | 452500 | 0.0006 |
| 4.9613 | 453000 | 0.0009 |
| 4.9668 | 453500 | 0.0008 |
| 4.9722 | 454000 | 0.0015 |
| 4.9777 | 454500 | 0.0008 |
| 4.9832 | 455000 | 0.0006 |
| 4.9887 | 455500 | 0.0006 |
| 4.9941 | 456000 | 0.0007 |
| 4.9996 | 456500 | 0.0006 |
</details>
### Framework Versions
- Python: 3.12.2
- Sentence Transformers: 3.0.1
- Transformers: 4.42.3
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |