|
--- |
|
license: mit |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
base_model: dslim/bert-base-NER |
|
model-index: |
|
- name: STS-Lora-Fine-Tuning-Capstone-bert-testing-23-with-lower-r-mid |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# STS-Lora-Fine-Tuning-Capstone-bert-testing-23-with-lower-r-mid |
|
|
|
This model is a fine-tuned version of [dslim/bert-base-NER](https://huggingface.co/dslim/bert-base-NER) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3610 |
|
- Accuracy: 0.4300 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 40 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| No log | 1.0 | 180 | 1.7491 | 0.2429 | |
|
| No log | 2.0 | 360 | 1.7395 | 0.2451 | |
|
| 1.7055 | 3.0 | 540 | 1.7242 | 0.2451 | |
|
| 1.7055 | 4.0 | 720 | 1.6937 | 0.2980 | |
|
| 1.7055 | 5.0 | 900 | 1.6446 | 0.3038 | |
|
| 1.6419 | 6.0 | 1080 | 1.6173 | 0.3176 | |
|
| 1.6419 | 7.0 | 1260 | 1.5638 | 0.3401 | |
|
| 1.6419 | 8.0 | 1440 | 1.5355 | 0.3524 | |
|
| 1.5258 | 9.0 | 1620 | 1.5112 | 0.3590 | |
|
| 1.5258 | 10.0 | 1800 | 1.4870 | 0.3742 | |
|
| 1.5258 | 11.0 | 1980 | 1.4729 | 0.3749 | |
|
| 1.4424 | 12.0 | 2160 | 1.4664 | 0.3938 | |
|
| 1.4424 | 13.0 | 2340 | 1.4524 | 0.4003 | |
|
| 1.4002 | 14.0 | 2520 | 1.4390 | 0.4061 | |
|
| 1.4002 | 15.0 | 2700 | 1.4317 | 0.4090 | |
|
| 1.4002 | 16.0 | 2880 | 1.4241 | 0.4155 | |
|
| 1.376 | 17.0 | 3060 | 1.4201 | 0.4148 | |
|
| 1.376 | 18.0 | 3240 | 1.4069 | 0.4083 | |
|
| 1.376 | 19.0 | 3420 | 1.4000 | 0.4184 | |
|
| 1.3533 | 20.0 | 3600 | 1.3978 | 0.4235 | |
|
| 1.3533 | 21.0 | 3780 | 1.3929 | 0.4329 | |
|
| 1.3533 | 22.0 | 3960 | 1.3896 | 0.4329 | |
|
| 1.3336 | 23.0 | 4140 | 1.3856 | 0.4264 | |
|
| 1.3336 | 24.0 | 4320 | 1.3833 | 0.4322 | |
|
| 1.3254 | 25.0 | 4500 | 1.3787 | 0.4235 | |
|
| 1.3254 | 26.0 | 4680 | 1.3744 | 0.4329 | |
|
| 1.3254 | 27.0 | 4860 | 1.3751 | 0.4300 | |
|
| 1.3082 | 28.0 | 5040 | 1.3720 | 0.4336 | |
|
| 1.3082 | 29.0 | 5220 | 1.3687 | 0.4300 | |
|
| 1.3082 | 30.0 | 5400 | 1.3674 | 0.4293 | |
|
| 1.3105 | 31.0 | 5580 | 1.3663 | 0.4373 | |
|
| 1.3105 | 32.0 | 5760 | 1.3643 | 0.4351 | |
|
| 1.3105 | 33.0 | 5940 | 1.3630 | 0.4271 | |
|
| 1.295 | 34.0 | 6120 | 1.3628 | 0.4322 | |
|
| 1.295 | 35.0 | 6300 | 1.3625 | 0.4300 | |
|
| 1.295 | 36.0 | 6480 | 1.3623 | 0.4307 | |
|
| 1.2919 | 37.0 | 6660 | 1.3617 | 0.4322 | |
|
| 1.2919 | 38.0 | 6840 | 1.3613 | 0.4315 | |
|
| 1.2905 | 39.0 | 7020 | 1.3610 | 0.4300 | |
|
| 1.2905 | 40.0 | 7200 | 1.3610 | 0.4300 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.10.0 |
|
- Transformers 4.38.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |