--- license: mit library_name: peft tags: - generated_from_trainer metrics: - accuracy base_model: dslim/bert-base-NER model-index: - name: STS-Lora-Fine-Tuning-Capstone-bert-testing-23-with-lower-r-mid results: [] --- # STS-Lora-Fine-Tuning-Capstone-bert-testing-23-with-lower-r-mid This model is a fine-tuned version of [dslim/bert-base-NER](https://huggingface.co/dslim/bert-base-NER) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3610 - Accuracy: 0.4300 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 180 | 1.7491 | 0.2429 | | No log | 2.0 | 360 | 1.7395 | 0.2451 | | 1.7055 | 3.0 | 540 | 1.7242 | 0.2451 | | 1.7055 | 4.0 | 720 | 1.6937 | 0.2980 | | 1.7055 | 5.0 | 900 | 1.6446 | 0.3038 | | 1.6419 | 6.0 | 1080 | 1.6173 | 0.3176 | | 1.6419 | 7.0 | 1260 | 1.5638 | 0.3401 | | 1.6419 | 8.0 | 1440 | 1.5355 | 0.3524 | | 1.5258 | 9.0 | 1620 | 1.5112 | 0.3590 | | 1.5258 | 10.0 | 1800 | 1.4870 | 0.3742 | | 1.5258 | 11.0 | 1980 | 1.4729 | 0.3749 | | 1.4424 | 12.0 | 2160 | 1.4664 | 0.3938 | | 1.4424 | 13.0 | 2340 | 1.4524 | 0.4003 | | 1.4002 | 14.0 | 2520 | 1.4390 | 0.4061 | | 1.4002 | 15.0 | 2700 | 1.4317 | 0.4090 | | 1.4002 | 16.0 | 2880 | 1.4241 | 0.4155 | | 1.376 | 17.0 | 3060 | 1.4201 | 0.4148 | | 1.376 | 18.0 | 3240 | 1.4069 | 0.4083 | | 1.376 | 19.0 | 3420 | 1.4000 | 0.4184 | | 1.3533 | 20.0 | 3600 | 1.3978 | 0.4235 | | 1.3533 | 21.0 | 3780 | 1.3929 | 0.4329 | | 1.3533 | 22.0 | 3960 | 1.3896 | 0.4329 | | 1.3336 | 23.0 | 4140 | 1.3856 | 0.4264 | | 1.3336 | 24.0 | 4320 | 1.3833 | 0.4322 | | 1.3254 | 25.0 | 4500 | 1.3787 | 0.4235 | | 1.3254 | 26.0 | 4680 | 1.3744 | 0.4329 | | 1.3254 | 27.0 | 4860 | 1.3751 | 0.4300 | | 1.3082 | 28.0 | 5040 | 1.3720 | 0.4336 | | 1.3082 | 29.0 | 5220 | 1.3687 | 0.4300 | | 1.3082 | 30.0 | 5400 | 1.3674 | 0.4293 | | 1.3105 | 31.0 | 5580 | 1.3663 | 0.4373 | | 1.3105 | 32.0 | 5760 | 1.3643 | 0.4351 | | 1.3105 | 33.0 | 5940 | 1.3630 | 0.4271 | | 1.295 | 34.0 | 6120 | 1.3628 | 0.4322 | | 1.295 | 35.0 | 6300 | 1.3625 | 0.4300 | | 1.295 | 36.0 | 6480 | 1.3623 | 0.4307 | | 1.2919 | 37.0 | 6660 | 1.3617 | 0.4322 | | 1.2919 | 38.0 | 6840 | 1.3613 | 0.4315 | | 1.2905 | 39.0 | 7020 | 1.3610 | 0.4300 | | 1.2905 | 40.0 | 7200 | 1.3610 | 0.4300 | ### Framework versions - PEFT 0.10.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2