quastrinos's picture
Upload TFDebertaV2ForMultipleChoice
80add85
---
license: mit
base_model: microsoft/deberta-v3-large
tags:
- generated_from_keras_callback
model-index:
- name: TF-40k-openbook-finetuned-deberta-v3-large-mcqa-TPU-v2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# TF-40k-openbook-finetuned-deberta-v3-large-mcqa-TPU-v2
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.6671
- Validation Loss: 0.9061
- Train Map@3: 0.8095
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': 0.01, 'clipnorm': 1, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'CosineDecay', 'config': {'initial_learning_rate': 2e-06, 'decay_steps': 2826, 'alpha': 5e-09, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: mixed_bfloat16
### Training results
| Train Loss | Validation Loss | Train Map@3 | Epoch |
|:----------:|:---------------:|:-----------:|:-----:|
| 0.9561 | 0.8899 | 0.8073 | 0 |
| 0.7125 | 0.8513 | 0.8244 | 1 |
| 0.6671 | 0.9061 | 0.8095 | 2 |
### Framework versions
- Transformers 4.35.0.dev0
- TensorFlow 2.12.0
- Datasets 2.14.5
- Tokenizers 0.14.1