File size: 1,873 Bytes
80add85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
license: mit
base_model: microsoft/deberta-v3-large
tags:
- generated_from_keras_callback
model-index:
- name: TF-40k-openbook-finetuned-deberta-v3-large-mcqa-TPU-v2
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# TF-40k-openbook-finetuned-deberta-v3-large-mcqa-TPU-v2

This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.6671
- Validation Loss: 0.9061
- Train Map@3: 0.8095
- Epoch: 2

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': 0.01, 'clipnorm': 1, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'CosineDecay', 'config': {'initial_learning_rate': 2e-06, 'decay_steps': 2826, 'alpha': 5e-09, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: mixed_bfloat16

### Training results

| Train Loss | Validation Loss | Train Map@3 | Epoch |
|:----------:|:---------------:|:-----------:|:-----:|
| 0.9561     | 0.8899          | 0.8073      | 0     |
| 0.7125     | 0.8513          | 0.8244      | 1     |
| 0.6671     | 0.9061          | 0.8095      | 2     |


### Framework versions

- Transformers 4.35.0.dev0
- TensorFlow 2.12.0
- Datasets 2.14.5
- Tokenizers 0.14.1