File size: 6,156 Bytes
4db1aba
 
 
 
 
 
afc5aa8
4db1aba
 
 
6970c9c
4db1aba
62960a8
9849dab
4db1aba
9996575
62960a8
4db1aba
8367fb1
9996575
 
afc5aa8
4db1aba
 
 
 
 
9849dab
4db1aba
 
 
2351c87
4db1aba
0ca919a
 
afc5aa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4db1aba
 
 
0ca919a
4db1aba
7e15abb
 
0ca919a
 
 
4db1aba
 
3e7c587
4db1aba
 
0ca919a
 
4db1aba
afc5aa8
4db1aba
 
afc5aa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
---
library_name: pytorch
license: agpl-3.0
tags:
- real_time
- android
pipeline_tag: image-segmentation

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yolov8_seg/web-assets/model_demo.png)

# YOLOv8-Segmentation: Optimized for Mobile Deployment
## Real-time object segmentation optimized for mobile and edge by Ultralytics


Ultralytics YOLOv8 is a machine learning model that predicts bounding boxes, segmentation masks and classes of objects in an image.

This model is an implementation of YOLOv8-Segmentation found [here](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/segment).


 More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/yolov8_seg).

### Model Details

- **Model Type:** Semantic segmentation
- **Model Stats:**
  - Model checkpoint: YOLOv8N-Seg
  - Input resolution: 640x640
  - Number of parameters: 3.43M
  - Model size: 13.2 MB
  - Number of output classes: 80

| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| YOLOv8-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 6.339 ms | 4 - 31 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 6.374 ms | 5 - 7 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 7.4 ms | 15 - 47 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 4.641 ms | 4 - 62 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 4.417 ms | 5 - 25 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 5.023 ms | 17 - 82 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 3.766 ms | 0 - 51 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 4.392 ms | 5 - 60 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 4.813 ms | 3 - 58 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | SA7255P ADP | SA7255P | TFLITE | 93.022 ms | 4 - 49 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | SA7255P ADP | SA7255P | QNN | 92.171 ms | 1 - 8 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 6.341 ms | 4 - 22 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | SA8255 (Proxy) | SA8255P Proxy | QNN | 6.332 ms | 5 - 8 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | SA8295P ADP | SA8295P | TFLITE | 11.343 ms | 4 - 37 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | SA8295P ADP | SA8295P | QNN | 10.824 ms | 0 - 10 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 6.373 ms | 4 - 23 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | SA8650 (Proxy) | SA8650P Proxy | QNN | 6.346 ms | 5 - 7 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | SA8775P ADP | SA8775P | TFLITE | 9.949 ms | 4 - 49 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | SA8775P ADP | SA8775P | QNN | 9.903 ms | 0 - 6 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 93.022 ms | 4 - 49 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 92.171 ms | 1 - 8 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 6.424 ms | 4 - 27 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 6.319 ms | 5 - 8 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 9.949 ms | 4 - 49 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 9.903 ms | 0 - 6 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 9.95 ms | 4 - 46 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 9.311 ms | 5 - 47 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 7.066 ms | 5 - 5 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 7.708 ms | 17 - 17 MB | FP16 | NPU | -- |




## License
* The license for the original implementation of YOLOv8-Segmentation can be found
  [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE)



## References
* [Ultralytics YOLOv8 Docs: Instance Segmentation](https://docs.ultralytics.com/tasks/segment/)
* [Source Model Implementation](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/segment)



## Community
* Join [our AI Hub Slack community](https://qualcomm-ai-hub.slack.com/join/shared_invite/zt-2d5zsmas3-Sj0Q9TzslueCjS31eXG2UA#/shared-invite/email) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).

## Usage and Limitations

Model may not be used for or in connection with any of the following applications:

- Accessing essential private and public services and benefits;
- Administration of justice and democratic processes;
- Assessing or recognizing the emotional state of a person;
- Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
- Education and vocational training;
- Employment and workers management;
- Exploitation of the vulnerabilities of persons resulting in harmful behavior;
- General purpose social scoring;
- Law enforcement;
- Management and operation of critical infrastructure;
- Migration, asylum and border control management;
- Predictive policing;
- Real-time remote biometric identification in public spaces;
- Recommender systems of social media platforms;
- Scraping of facial images (from the internet or otherwise); and/or
- Subliminal manipulation