qaihm-bot commited on
Commit
afc5aa8
·
verified ·
1 Parent(s): 1a442a3

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +52 -210
README.md CHANGED
@@ -1,10 +1,10 @@
1
  ---
2
  library_name: pytorch
3
  license: agpl-3.0
4
- pipeline_tag: image-segmentation
5
  tags:
6
  - real_time
7
  - android
 
8
 
9
  ---
10
 
@@ -19,10 +19,7 @@ Ultralytics YOLOv8 is a machine learning model that predicts bounding boxes, seg
19
  This model is an implementation of YOLOv8-Segmentation found [here](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/segment).
20
 
21
 
22
- This repository provides scripts to run YOLOv8-Segmentation on Qualcomm® devices.
23
- More details on model performance across various devices, can be found
24
- [here](https://aihub.qualcomm.com/models/yolov8_seg).
25
-
26
 
27
  ### Model Details
28
 
@@ -36,211 +33,37 @@ More details on model performance across various devices, can be found
36
 
37
  | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
  |---|---|---|---|---|---|---|---|---|
39
- | YOLOv8-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 6.507 ms | 4 - 27 MB | FP16 | NPU | [YOLOv8-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.tflite) |
40
- | YOLOv8-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 6.403 ms | 5 - 15 MB | FP16 | NPU | [YOLOv8-Segmentation.so](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.so) |
41
- | YOLOv8-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 7.767 ms | 14 - 50 MB | FP16 | NPU | [YOLOv8-Segmentation.onnx](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.onnx) |
42
- | YOLOv8-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 4.788 ms | 0 - 54 MB | FP16 | NPU | [YOLOv8-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.tflite) |
43
- | YOLOv8-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 4.569 ms | 0 - 55 MB | FP16 | NPU | [YOLOv8-Segmentation.so](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.so) |
44
- | YOLOv8-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 5.183 ms | 16 - 78 MB | FP16 | NPU | [YOLOv8-Segmentation.onnx](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.onnx) |
45
- | YOLOv8-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 4.602 ms | 0 - 52 MB | FP16 | NPU | [YOLOv8-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.tflite) |
46
- | YOLOv8-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 4.439 ms | 5 - 60 MB | FP16 | NPU | Use Export Script |
47
- | YOLOv8-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 4.787 ms | 5 - 58 MB | FP16 | NPU | [YOLOv8-Segmentation.onnx](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.onnx) |
48
- | YOLOv8-Segmentation | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 6.485 ms | 4 - 25 MB | FP16 | NPU | [YOLOv8-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.tflite) |
49
- | YOLOv8-Segmentation | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 6.316 ms | 5 - 8 MB | FP16 | NPU | Use Export Script |
50
- | YOLOv8-Segmentation | SA7255P ADP | SA7255P | TFLITE | 93.297 ms | 4 - 51 MB | FP16 | NPU | [YOLOv8-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.tflite) |
51
- | YOLOv8-Segmentation | SA7255P ADP | SA7255P | QNN | 92.263 ms | 0 - 9 MB | FP16 | NPU | Use Export Script |
52
- | YOLOv8-Segmentation | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 6.532 ms | 4 - 26 MB | FP16 | NPU | [YOLOv8-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.tflite) |
53
- | YOLOv8-Segmentation | SA8255 (Proxy) | SA8255P Proxy | QNN | 6.294 ms | 5 - 8 MB | FP16 | NPU | Use Export Script |
54
- | YOLOv8-Segmentation | SA8295P ADP | SA8295P | TFLITE | 11.454 ms | 4 - 42 MB | FP16 | NPU | [YOLOv8-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.tflite) |
55
- | YOLOv8-Segmentation | SA8295P ADP | SA8295P | QNN | 11.015 ms | 0 - 14 MB | FP16 | NPU | Use Export Script |
56
- | YOLOv8-Segmentation | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 6.539 ms | 4 - 27 MB | FP16 | NPU | [YOLOv8-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.tflite) |
57
- | YOLOv8-Segmentation | SA8650 (Proxy) | SA8650P Proxy | QNN | 6.394 ms | 5 - 8 MB | FP16 | NPU | Use Export Script |
58
- | YOLOv8-Segmentation | SA8775P ADP | SA8775P | TFLITE | 10.159 ms | 4 - 50 MB | FP16 | NPU | [YOLOv8-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.tflite) |
59
- | YOLOv8-Segmentation | SA8775P ADP | SA8775P | QNN | 10.125 ms | 0 - 10 MB | FP16 | NPU | Use Export Script |
60
- | YOLOv8-Segmentation | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 10.14 ms | 4 - 45 MB | FP16 | NPU | [YOLOv8-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.tflite) |
61
- | YOLOv8-Segmentation | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 9.542 ms | 5 - 51 MB | FP16 | NPU | Use Export Script |
62
- | YOLOv8-Segmentation | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 6.895 ms | 5 - 5 MB | FP16 | NPU | Use Export Script |
63
- | YOLOv8-Segmentation | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 7.655 ms | 17 - 17 MB | FP16 | NPU | [YOLOv8-Segmentation.onnx](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.onnx) |
64
-
65
-
66
-
67
-
68
- ## Installation
69
-
70
-
71
- Install the package via pip:
72
- ```bash
73
- pip install "qai-hub-models[yolov8-seg]"
74
- ```
75
-
76
-
77
- ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
78
-
79
- Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
80
- Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
81
-
82
- With this API token, you can configure your client to run models on the cloud
83
- hosted devices.
84
- ```bash
85
- qai-hub configure --api_token API_TOKEN
86
- ```
87
- Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
88
-
89
-
90
-
91
- ## Demo off target
92
-
93
- The package contains a simple end-to-end demo that downloads pre-trained
94
- weights and runs this model on a sample input.
95
-
96
- ```bash
97
- python -m qai_hub_models.models.yolov8_seg.demo
98
- ```
99
-
100
- The above demo runs a reference implementation of pre-processing, model
101
- inference, and post processing.
102
-
103
- **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
104
- environment, please add the following to your cell (instead of the above).
105
- ```
106
- %run -m qai_hub_models.models.yolov8_seg.demo
107
- ```
108
-
109
-
110
- ### Run model on a cloud-hosted device
111
-
112
- In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
113
- device. This script does the following:
114
- * Performance check on-device on a cloud-hosted device
115
- * Downloads compiled assets that can be deployed on-device for Android.
116
- * Accuracy check between PyTorch and on-device outputs.
117
-
118
- ```bash
119
- python -m qai_hub_models.models.yolov8_seg.export
120
- ```
121
- ```
122
- Profiling Results
123
- ------------------------------------------------------------
124
- YOLOv8-Segmentation
125
- Device : Samsung Galaxy S23 (13)
126
- Runtime : TFLITE
127
- Estimated inference time (ms) : 6.5
128
- Estimated peak memory usage (MB): [4, 27]
129
- Total # Ops : 338
130
- Compute Unit(s) : NPU (338 ops)
131
- ```
132
-
133
-
134
- ## How does this work?
135
-
136
- This [export script](https://aihub.qualcomm.com/models/yolov8_seg/qai_hub_models/models/YOLOv8-Segmentation/export.py)
137
- leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
138
- on-device. Lets go through each step below in detail:
139
-
140
- Step 1: **Compile model for on-device deployment**
141
-
142
- To compile a PyTorch model for on-device deployment, we first trace the model
143
- in memory using the `jit.trace` and then call the `submit_compile_job` API.
144
 
145
- ```python
146
- import torch
147
 
148
- import qai_hub as hub
149
- from qai_hub_models.models.yolov8_seg import Model
150
-
151
- # Load the model
152
- torch_model = Model.from_pretrained()
153
-
154
- # Device
155
- device = hub.Device("Samsung Galaxy S24")
156
-
157
- # Trace model
158
- input_shape = torch_model.get_input_spec()
159
- sample_inputs = torch_model.sample_inputs()
160
-
161
- pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
162
-
163
- # Compile model on a specific device
164
- compile_job = hub.submit_compile_job(
165
- model=pt_model,
166
- device=device,
167
- input_specs=torch_model.get_input_spec(),
168
- )
169
-
170
- # Get target model to run on-device
171
- target_model = compile_job.get_target_model()
172
-
173
- ```
174
-
175
-
176
- Step 2: **Performance profiling on cloud-hosted device**
177
-
178
- After compiling models from step 1. Models can be profiled model on-device using the
179
- `target_model`. Note that this scripts runs the model on a device automatically
180
- provisioned in the cloud. Once the job is submitted, you can navigate to a
181
- provided job URL to view a variety of on-device performance metrics.
182
- ```python
183
- profile_job = hub.submit_profile_job(
184
- model=target_model,
185
- device=device,
186
- )
187
-
188
- ```
189
-
190
- Step 3: **Verify on-device accuracy**
191
-
192
- To verify the accuracy of the model on-device, you can run on-device inference
193
- on sample input data on the same cloud hosted device.
194
- ```python
195
- input_data = torch_model.sample_inputs()
196
- inference_job = hub.submit_inference_job(
197
- model=target_model,
198
- device=device,
199
- inputs=input_data,
200
- )
201
- on_device_output = inference_job.download_output_data()
202
-
203
- ```
204
- With the output of the model, you can compute like PSNR, relative errors or
205
- spot check the output with expected output.
206
-
207
- **Note**: This on-device profiling and inference requires access to Qualcomm®
208
- AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
209
-
210
-
211
-
212
- ## Run demo on a cloud-hosted device
213
-
214
- You can also run the demo on-device.
215
-
216
- ```bash
217
- python -m qai_hub_models.models.yolov8_seg.demo --on-device
218
- ```
219
-
220
- **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
221
- environment, please add the following to your cell (instead of the above).
222
- ```
223
- %run -m qai_hub_models.models.yolov8_seg.demo -- --on-device
224
- ```
225
-
226
-
227
- ## Deploying compiled model to Android
228
-
229
-
230
- The models can be deployed using multiple runtimes:
231
- - TensorFlow Lite (`.tflite` export): [This
232
- tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
233
- guide to deploy the .tflite model in an Android application.
234
-
235
-
236
- - QNN (`.so` export ): This [sample
237
- app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
238
- provides instructions on how to use the `.so` shared library in an Android application.
239
-
240
-
241
- ## View on Qualcomm® AI Hub
242
- Get more details on YOLOv8-Segmentation's performance across various devices [here](https://aihub.qualcomm.com/models/yolov8_seg).
243
- Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
244
 
245
 
246
  ## License
@@ -257,7 +80,26 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
257
 
258
 
259
  ## Community
260
- * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
261
  * For questions or feedback please [reach out to us](mailto:[email protected]).
262
 
263
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: pytorch
3
  license: agpl-3.0
 
4
  tags:
5
  - real_time
6
  - android
7
+ pipeline_tag: image-segmentation
8
 
9
  ---
10
 
 
19
  This model is an implementation of YOLOv8-Segmentation found [here](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/segment).
20
 
21
 
22
+ More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/yolov8_seg).
 
 
 
23
 
24
  ### Model Details
25
 
 
33
 
34
  | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
35
  |---|---|---|---|---|---|---|---|---|
36
+ | YOLOv8-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 6.339 ms | 4 - 31 MB | FP16 | NPU | -- |
37
+ | YOLOv8-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 6.374 ms | 5 - 7 MB | FP16 | NPU | -- |
38
+ | YOLOv8-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 7.4 ms | 15 - 47 MB | FP16 | NPU | -- |
39
+ | YOLOv8-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 4.641 ms | 4 - 62 MB | FP16 | NPU | -- |
40
+ | YOLOv8-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 4.417 ms | 5 - 25 MB | FP16 | NPU | -- |
41
+ | YOLOv8-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 5.023 ms | 17 - 82 MB | FP16 | NPU | -- |
42
+ | YOLOv8-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 3.766 ms | 0 - 51 MB | FP16 | NPU | -- |
43
+ | YOLOv8-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 4.392 ms | 5 - 60 MB | FP16 | NPU | -- |
44
+ | YOLOv8-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 4.813 ms | 3 - 58 MB | FP16 | NPU | -- |
45
+ | YOLOv8-Segmentation | SA7255P ADP | SA7255P | TFLITE | 93.022 ms | 4 - 49 MB | FP16 | NPU | -- |
46
+ | YOLOv8-Segmentation | SA7255P ADP | SA7255P | QNN | 92.171 ms | 1 - 8 MB | FP16 | NPU | -- |
47
+ | YOLOv8-Segmentation | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 6.341 ms | 4 - 22 MB | FP16 | NPU | -- |
48
+ | YOLOv8-Segmentation | SA8255 (Proxy) | SA8255P Proxy | QNN | 6.332 ms | 5 - 8 MB | FP16 | NPU | -- |
49
+ | YOLOv8-Segmentation | SA8295P ADP | SA8295P | TFLITE | 11.343 ms | 4 - 37 MB | FP16 | NPU | -- |
50
+ | YOLOv8-Segmentation | SA8295P ADP | SA8295P | QNN | 10.824 ms | 0 - 10 MB | FP16 | NPU | -- |
51
+ | YOLOv8-Segmentation | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 6.373 ms | 4 - 23 MB | FP16 | NPU | -- |
52
+ | YOLOv8-Segmentation | SA8650 (Proxy) | SA8650P Proxy | QNN | 6.346 ms | 5 - 7 MB | FP16 | NPU | -- |
53
+ | YOLOv8-Segmentation | SA8775P ADP | SA8775P | TFLITE | 9.949 ms | 4 - 49 MB | FP16 | NPU | -- |
54
+ | YOLOv8-Segmentation | SA8775P ADP | SA8775P | QNN | 9.903 ms | 0 - 6 MB | FP16 | NPU | -- |
55
+ | YOLOv8-Segmentation | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 93.022 ms | 4 - 49 MB | FP16 | NPU | -- |
56
+ | YOLOv8-Segmentation | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 92.171 ms | 1 - 8 MB | FP16 | NPU | -- |
57
+ | YOLOv8-Segmentation | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 6.424 ms | 4 - 27 MB | FP16 | NPU | -- |
58
+ | YOLOv8-Segmentation | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 6.319 ms | 5 - 8 MB | FP16 | NPU | -- |
59
+ | YOLOv8-Segmentation | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 9.949 ms | 4 - 49 MB | FP16 | NPU | -- |
60
+ | YOLOv8-Segmentation | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 9.903 ms | 0 - 6 MB | FP16 | NPU | -- |
61
+ | YOLOv8-Segmentation | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 9.95 ms | 4 - 46 MB | FP16 | NPU | -- |
62
+ | YOLOv8-Segmentation | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 9.311 ms | 5 - 47 MB | FP16 | NPU | -- |
63
+ | YOLOv8-Segmentation | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 7.066 ms | 5 - 5 MB | FP16 | NPU | -- |
64
+ | YOLOv8-Segmentation | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 7.708 ms | 17 - 17 MB | FP16 | NPU | -- |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
 
 
 
66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
 
68
 
69
  ## License
 
80
 
81
 
82
  ## Community
83
+ * Join [our AI Hub Slack community](https://qualcomm-ai-hub.slack.com/join/shared_invite/zt-2d5zsmas3-Sj0Q9TzslueCjS31eXG2UA#/shared-invite/email) to collaborate, post questions and learn more about on-device AI.
84
  * For questions or feedback please [reach out to us](mailto:[email protected]).
85
 
86
+ ## Usage and Limitations
87
+
88
+ Model may not be used for or in connection with any of the following applications:
89
+
90
+ - Accessing essential private and public services and benefits;
91
+ - Administration of justice and democratic processes;
92
+ - Assessing or recognizing the emotional state of a person;
93
+ - Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
94
+ - Education and vocational training;
95
+ - Employment and workers management;
96
+ - Exploitation of the vulnerabilities of persons resulting in harmful behavior;
97
+ - General purpose social scoring;
98
+ - Law enforcement;
99
+ - Management and operation of critical infrastructure;
100
+ - Migration, asylum and border control management;
101
+ - Predictive policing;
102
+ - Real-time remote biometric identification in public spaces;
103
+ - Recommender systems of social media platforms;
104
+ - Scraping of facial images (from the internet or otherwise); and/or
105
+ - Subliminal manipulation