Update README.md
Browse files
README.md
CHANGED
@@ -10,13 +10,13 @@ tags:
|
|
10 |
|
11 |

|
12 |
|
13 |
-
#
|
14 |
## Real-time object segmentation optimized for mobile and edge
|
15 |
|
16 |
-
|
17 |
|
18 |
-
This model is an implementation of
|
19 |
-
This repository provides scripts to run
|
20 |
More details on model performance across various devices, can be found
|
21 |
[here](https://aihub.qualcomm.com/models/yolov8_seg).
|
22 |
|
@@ -25,7 +25,7 @@ More details on model performance across various devices, can be found
|
|
25 |
|
26 |
- **Model Type:** Semantic segmentation
|
27 |
- **Model Stats:**
|
28 |
-
- Model checkpoint:
|
29 |
- Input resolution: 640x640
|
30 |
- Number of parameters: 3.43M
|
31 |
- Model size: 13.2 MB
|
@@ -33,7 +33,7 @@ More details on model performance across various devices, can be found
|
|
33 |
|
34 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
35 |
| ---|---|---|---|---|---|---|---|
|
36 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 10.686 ms | 4 - 7 MB | FP16 | NPU | [
|
37 |
|
38 |
|
39 |
## Installation
|
@@ -92,7 +92,7 @@ python -m qai_hub_models.models.yolov8_seg.export
|
|
92 |
```
|
93 |
|
94 |
```
|
95 |
-
Profile Job summary of
|
96 |
--------------------------------------------------
|
97 |
Device: Samsung Galaxy S23 Ultra (13)
|
98 |
Estimated Inference Time: 10.69 ms
|
@@ -210,13 +210,12 @@ provides instructions on how to use the `.so` shared library in an Android appl
|
|
210 |
|
211 |
|
212 |
## View on Qualcomm® AI Hub
|
213 |
-
Get more details on
|
214 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
215 |
|
216 |
## License
|
217 |
-
- The license for the original implementation of
|
218 |
[here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE).
|
219 |
-
- The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf).
|
220 |
|
221 |
## References
|
222 |
* [Real-Time Flying Object Detection with YOLOv8](https://arxiv.org/abs/2305.09972)
|
|
|
10 |
|
11 |

|
12 |
|
13 |
+
# YOLOv8-Segmentation: Optimized for Mobile Deployment
|
14 |
## Real-time object segmentation optimized for mobile and edge
|
15 |
|
16 |
+
Ultralytics YOLOv8 is a machine learning model that predicts bounding boxes, segmentation masks and classes of objects in an image.
|
17 |
|
18 |
+
This model is an implementation of YOLOv8-Segmentation found [here](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/segment).
|
19 |
+
This repository provides scripts to run YOLOv8-Segmentation on Qualcomm® devices.
|
20 |
More details on model performance across various devices, can be found
|
21 |
[here](https://aihub.qualcomm.com/models/yolov8_seg).
|
22 |
|
|
|
25 |
|
26 |
- **Model Type:** Semantic segmentation
|
27 |
- **Model Stats:**
|
28 |
+
- Model checkpoint: YOLOv8-Seg
|
29 |
- Input resolution: 640x640
|
30 |
- Number of parameters: 3.43M
|
31 |
- Model size: 13.2 MB
|
|
|
33 |
|
34 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
35 |
| ---|---|---|---|---|---|---|---|
|
36 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 10.686 ms | 4 - 7 MB | FP16 | NPU | [YOLOv8-Segmentation.tflite](https://huggingface.co/qualcomm/Yolo-v8-Segmentation/blob/main/Yolo-v8-Segmentation.tflite)
|
37 |
|
38 |
|
39 |
## Installation
|
|
|
92 |
```
|
93 |
|
94 |
```
|
95 |
+
Profile Job summary of YOLOv8-Segmentation
|
96 |
--------------------------------------------------
|
97 |
Device: Samsung Galaxy S23 Ultra (13)
|
98 |
Estimated Inference Time: 10.69 ms
|
|
|
210 |
|
211 |
|
212 |
## View on Qualcomm® AI Hub
|
213 |
+
Get more details on YOLOv8-Segmentation's performance across various devices [here](https://aihub.qualcomm.com/models/yolov8_seg).
|
214 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
215 |
|
216 |
## License
|
217 |
+
- The license for the original implementation of YOLOv8-Segmentation can be found
|
218 |
[here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE).
|
|
|
219 |
|
220 |
## References
|
221 |
* [Real-Time Flying Object Detection with YOLOv8](https://arxiv.org/abs/2305.09972)
|