bert-imdb-model / README.md
philipobiorah's picture
Update README.md
c3c34f2 verified
|
raw
history blame
1.59 kB
---
license: mit
datasets:
- stanfordnlp/imdb
language:
- en
metrics:
- accuracy
base_model:
- google-bert/bert-base-uncased
pipeline_tag: text-classification
library_name: transformers
tags:
- code
- sentiment-analysis
- bert
- imdb
- text-classification
- nlp
---
# BERT IMDb Sentiment Analysis Model
This repository contains a fine-tuned BERT model for sentiment analysis on IMDb movie reviews. The model classifies text as either **Positive** or **Negative** sentiment.
## Live Demo: https://huggingface.co/spaces/philipobiorah/bert-sentiment-analysis
## Model Details
- **Base Model**: `bert-base-uncased`
- **Dataset**: IMDb Movie Reviews
- **Task**: Sentiment Analysis (Binary Classification)
- **Fine-tuned on**: IMDb dataset
- **Labels**:
- `0`: Negative
- `1`: Positive
## Usage
### Load the Model using `transformers`
```python
from transformers import BertTokenizer, BertForSequenceClassification
import torch
model_name = "philipobiorah/bert-imdb-model"
# Load tokenizer and model
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
model = BertForSequenceClassification.from_pretrained(model_name)
# Define function for sentiment prediction
def predict_sentiment(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
with torch.no_grad():
logits = model(**inputs).logits
return "Positive" if logits.argmax().item() == 1 else "Negative"
# Test the model
print(predict_sentiment("This movie was absolutely fantastic!"))
print(predict_sentiment("I really disliked this movie, it was terrible."))