File size: 1,594 Bytes
172776a fc3d941 c3c34f2 fc3d941 9144b53 fc3d941 172776a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
---
license: mit
datasets:
- stanfordnlp/imdb
language:
- en
metrics:
- accuracy
base_model:
- google-bert/bert-base-uncased
pipeline_tag: text-classification
library_name: transformers
tags:
- code
- sentiment-analysis
- bert
- imdb
- text-classification
- nlp
---
# BERT IMDb Sentiment Analysis Model
This repository contains a fine-tuned BERT model for sentiment analysis on IMDb movie reviews. The model classifies text as either **Positive** or **Negative** sentiment.
## Live Demo: https://huggingface.co/spaces/philipobiorah/bert-sentiment-analysis
## Model Details
- **Base Model**: `bert-base-uncased`
- **Dataset**: IMDb Movie Reviews
- **Task**: Sentiment Analysis (Binary Classification)
- **Fine-tuned on**: IMDb dataset
- **Labels**:
- `0`: Negative
- `1`: Positive
## Usage
### Load the Model using `transformers`
```python
from transformers import BertTokenizer, BertForSequenceClassification
import torch
model_name = "philipobiorah/bert-imdb-model"
# Load tokenizer and model
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
model = BertForSequenceClassification.from_pretrained(model_name)
# Define function for sentiment prediction
def predict_sentiment(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
with torch.no_grad():
logits = model(**inputs).logits
return "Positive" if logits.argmax().item() == 1 else "Negative"
# Test the model
print(predict_sentiment("This movie was absolutely fantastic!"))
print(predict_sentiment("I really disliked this movie, it was terrible.")) |