Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,70 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
# BERT IMDb Sentiment Analysis Model
|
| 3 |
+
|
| 4 |
+
This repository contains a fine-tuned BERT model for sentiment analysis on IMDb movie reviews. The model classifies text as either **Positive** or **Negative** sentiment.
|
| 5 |
+
|
| 6 |
+
## Model Details
|
| 7 |
+
- **Base Model**: `bert-base-uncased`
|
| 8 |
+
- **Dataset**: IMDb Movie Reviews
|
| 9 |
+
- **Task**: Sentiment Analysis (Binary Classification)
|
| 10 |
+
- **Fine-tuned on**: IMDb dataset
|
| 11 |
+
- **Labels**:
|
| 12 |
+
- `0`: Negative
|
| 13 |
+
- `1`: Positive
|
| 14 |
+
|
| 15 |
+
## Usage
|
| 16 |
+
|
| 17 |
+
### Load the Model using `transformers`
|
| 18 |
+
```python
|
| 19 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
| 20 |
+
import torch
|
| 21 |
+
|
| 22 |
+
model_name = "philipobiorah/bert-imdb-model"
|
| 23 |
+
|
| 24 |
+
# Load tokenizer and model
|
| 25 |
+
tokenizer = BertTokenizer.from_pretrained(model_name)
|
| 26 |
+
model = BertForSequenceClassification.from_pretrained(model_name)
|
| 27 |
+
|
| 28 |
+
# Define function for sentiment prediction
|
| 29 |
+
def predict_sentiment(text):
|
| 30 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
| 31 |
+
with torch.no_grad():
|
| 32 |
+
logits = model(**inputs).logits
|
| 33 |
+
return "Positive" if logits.argmax().item() == 1 else "Negative"
|
| 34 |
+
|
| 35 |
+
# Test the model
|
| 36 |
+
print(predict_sentiment("This movie was absolutely fantastic!"))
|
| 37 |
+
print(predict_sentiment("I really disliked this movie, it was terrible."))
|
| 38 |
+
```
|
| 39 |
+
|
| 40 |
+
## Using the Inference API
|
| 41 |
+
You can also use the Hugging Face Inference API to test the model:
|
| 42 |
+
```python
|
| 43 |
+
from transformers import pipeline
|
| 44 |
+
|
| 45 |
+
classifier = pipeline("text-classification", model="philipobiorah/bert-imdb-model")
|
| 46 |
+
print(classifier("This movie was amazing!"))
|
| 47 |
+
```
|
| 48 |
+
|
| 49 |
+
## Deploying as a Web App (Gradio)
|
| 50 |
+
You can deploy this model using Gradio for an interactive UI:
|
| 51 |
+
```python
|
| 52 |
+
import gradio as gr
|
| 53 |
+
from transformers import pipeline
|
| 54 |
+
|
| 55 |
+
classifier = pipeline("text-classification", model="philipobiorah/bert-imdb-model")
|
| 56 |
+
|
| 57 |
+
def predict(text):
|
| 58 |
+
return classifier(text)[0]['label']
|
| 59 |
+
|
| 60 |
+
gr.Interface(fn=predict, inputs="text", outputs="label").launch()
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
## License
|
| 64 |
+
This model is released under the **MIT License**.
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
---
|
| 69 |
+
license: mit
|
| 70 |
+
---
|