Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,70 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# BERT IMDb Sentiment Analysis Model
|
3 |
+
|
4 |
+
This repository contains a fine-tuned BERT model for sentiment analysis on IMDb movie reviews. The model classifies text as either **Positive** or **Negative** sentiment.
|
5 |
+
|
6 |
+
## Model Details
|
7 |
+
- **Base Model**: `bert-base-uncased`
|
8 |
+
- **Dataset**: IMDb Movie Reviews
|
9 |
+
- **Task**: Sentiment Analysis (Binary Classification)
|
10 |
+
- **Fine-tuned on**: IMDb dataset
|
11 |
+
- **Labels**:
|
12 |
+
- `0`: Negative
|
13 |
+
- `1`: Positive
|
14 |
+
|
15 |
+
## Usage
|
16 |
+
|
17 |
+
### Load the Model using `transformers`
|
18 |
+
```python
|
19 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
20 |
+
import torch
|
21 |
+
|
22 |
+
model_name = "philipobiorah/bert-imdb-model"
|
23 |
+
|
24 |
+
# Load tokenizer and model
|
25 |
+
tokenizer = BertTokenizer.from_pretrained(model_name)
|
26 |
+
model = BertForSequenceClassification.from_pretrained(model_name)
|
27 |
+
|
28 |
+
# Define function for sentiment prediction
|
29 |
+
def predict_sentiment(text):
|
30 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
31 |
+
with torch.no_grad():
|
32 |
+
logits = model(**inputs).logits
|
33 |
+
return "Positive" if logits.argmax().item() == 1 else "Negative"
|
34 |
+
|
35 |
+
# Test the model
|
36 |
+
print(predict_sentiment("This movie was absolutely fantastic!"))
|
37 |
+
print(predict_sentiment("I really disliked this movie, it was terrible."))
|
38 |
+
```
|
39 |
+
|
40 |
+
## Using the Inference API
|
41 |
+
You can also use the Hugging Face Inference API to test the model:
|
42 |
+
```python
|
43 |
+
from transformers import pipeline
|
44 |
+
|
45 |
+
classifier = pipeline("text-classification", model="philipobiorah/bert-imdb-model")
|
46 |
+
print(classifier("This movie was amazing!"))
|
47 |
+
```
|
48 |
+
|
49 |
+
## Deploying as a Web App (Gradio)
|
50 |
+
You can deploy this model using Gradio for an interactive UI:
|
51 |
+
```python
|
52 |
+
import gradio as gr
|
53 |
+
from transformers import pipeline
|
54 |
+
|
55 |
+
classifier = pipeline("text-classification", model="philipobiorah/bert-imdb-model")
|
56 |
+
|
57 |
+
def predict(text):
|
58 |
+
return classifier(text)[0]['label']
|
59 |
+
|
60 |
+
gr.Interface(fn=predict, inputs="text", outputs="label").launch()
|
61 |
+
```
|
62 |
+
|
63 |
+
## License
|
64 |
+
This model is released under the **MIT License**.
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
---
|
69 |
+
license: mit
|
70 |
+
---
|