|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: blurred_landmarks |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: landmarks |
|
split: validation |
|
args: landmarks |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9645365168539326 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# blurred_landmarks |
|
|
|
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1152 |
|
- Accuracy: 0.9645 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.6588 | 1.0 | 357 | 0.6460 | 0.7707 | |
|
| 0.3752 | 2.0 | 714 | 0.2969 | 0.8933 | |
|
| 0.3275 | 3.0 | 1071 | 0.1912 | 0.9319 | |
|
| 0.2183 | 4.0 | 1429 | 0.1794 | 0.9305 | |
|
| 0.2133 | 5.0 | 1786 | 0.1638 | 0.9414 | |
|
| 0.1984 | 6.0 | 2143 | 0.1322 | 0.9484 | |
|
| 0.1409 | 7.0 | 2500 | 0.1304 | 0.9529 | |
|
| 0.1864 | 8.0 | 2858 | 0.1212 | 0.9572 | |
|
| 0.1778 | 9.0 | 3215 | 0.1216 | 0.9540 | |
|
| 0.1734 | 10.0 | 3572 | 0.1129 | 0.9593 | |
|
| 0.1349 | 11.0 | 3929 | 0.1127 | 0.9614 | |
|
| 0.1057 | 12.0 | 4287 | 0.1177 | 0.9582 | |
|
| 0.1434 | 13.0 | 4644 | 0.1153 | 0.9603 | |
|
| 0.0832 | 14.0 | 5001 | 0.1264 | 0.9593 | |
|
| 0.0963 | 15.0 | 5358 | 0.1146 | 0.9607 | |
|
| 0.0642 | 16.0 | 5716 | 0.1135 | 0.9635 | |
|
| 0.0763 | 17.0 | 6073 | 0.1210 | 0.9614 | |
|
| 0.0432 | 18.0 | 6430 | 0.1162 | 0.9645 | |
|
| 0.0618 | 19.0 | 6787 | 0.1269 | 0.9600 | |
|
| 0.049 | 19.99 | 7140 | 0.1152 | 0.9645 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.0.dev0 |
|
- Pytorch 1.13.0 |
|
- Datasets 2.10.1 |
|
- Tokenizers 0.11.0 |
|
|