File size: 2,924 Bytes
0085ed2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: blurred_landmarks
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: landmarks
      split: validation
      args: landmarks
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9645365168539326
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# blurred_landmarks

This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1152
- Accuracy: 0.9645

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6588        | 1.0   | 357  | 0.6460          | 0.7707   |
| 0.3752        | 2.0   | 714  | 0.2969          | 0.8933   |
| 0.3275        | 3.0   | 1071 | 0.1912          | 0.9319   |
| 0.2183        | 4.0   | 1429 | 0.1794          | 0.9305   |
| 0.2133        | 5.0   | 1786 | 0.1638          | 0.9414   |
| 0.1984        | 6.0   | 2143 | 0.1322          | 0.9484   |
| 0.1409        | 7.0   | 2500 | 0.1304          | 0.9529   |
| 0.1864        | 8.0   | 2858 | 0.1212          | 0.9572   |
| 0.1778        | 9.0   | 3215 | 0.1216          | 0.9540   |
| 0.1734        | 10.0  | 3572 | 0.1129          | 0.9593   |
| 0.1349        | 11.0  | 3929 | 0.1127          | 0.9614   |
| 0.1057        | 12.0  | 4287 | 0.1177          | 0.9582   |
| 0.1434        | 13.0  | 4644 | 0.1153          | 0.9603   |
| 0.0832        | 14.0  | 5001 | 0.1264          | 0.9593   |
| 0.0963        | 15.0  | 5358 | 0.1146          | 0.9607   |
| 0.0642        | 16.0  | 5716 | 0.1135          | 0.9635   |
| 0.0763        | 17.0  | 6073 | 0.1210          | 0.9614   |
| 0.0432        | 18.0  | 6430 | 0.1162          | 0.9645   |
| 0.0618        | 19.0  | 6787 | 0.1269          | 0.9600   |
| 0.049         | 19.99 | 7140 | 0.1152          | 0.9645   |


### Framework versions

- Transformers 4.30.0.dev0
- Pytorch 1.13.0
- Datasets 2.10.1
- Tokenizers 0.11.0