deepseek_finetuned / README.md
pavanyadav's picture
pavanyadav/deepseek-r1-distill-qwen-1.5b-ins
f2c0d5a verified
---
library_name: peft
license: mit
base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
tags:
- generated_from_trainer
model-index:
- name: deepseek_finetuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deepseek_finetuned
This model is a fine-tuned version of [deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3560
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 3.926 | 0.1429 | 100 | 1.3948 |
| 0.6639 | 0.2857 | 200 | 0.4467 |
| 0.4304 | 0.4286 | 300 | 0.4228 |
| 0.4158 | 0.5714 | 400 | 0.4118 |
| 0.4046 | 0.7143 | 500 | 0.4031 |
| 0.3968 | 0.8571 | 600 | 0.3952 |
| 0.3925 | 1.0 | 700 | 0.3888 |
| 0.3864 | 1.1429 | 800 | 0.3834 |
| 0.3781 | 1.2857 | 900 | 0.3785 |
| 0.3759 | 1.4286 | 1000 | 0.3743 |
| 0.3696 | 1.5714 | 1100 | 0.3708 |
| 0.3679 | 1.7143 | 1200 | 0.3675 |
| 0.3664 | 1.8571 | 1300 | 0.3647 |
| 0.3637 | 2.0 | 1400 | 0.3626 |
| 0.3607 | 2.1429 | 1500 | 0.3607 |
| 0.3573 | 2.2857 | 1600 | 0.3592 |
| 0.3607 | 2.4286 | 1700 | 0.3580 |
| 0.3561 | 2.5714 | 1800 | 0.3571 |
| 0.357 | 2.7143 | 1900 | 0.3564 |
| 0.354 | 2.8571 | 2000 | 0.3561 |
| 0.3548 | 3.0 | 2100 | 0.3560 |
### Framework versions
- PEFT 0.14.0
- Transformers 4.48.2
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0