deepseek_finetuned / README.md
pavanyadav's picture
pavanyadav/deepseek-r1-distill-qwen-1.5b-ins
f2c0d5a verified
metadata
library_name: peft
license: mit
base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
tags:
  - generated_from_trainer
model-index:
  - name: deepseek_finetuned
    results: []

deepseek_finetuned

This model is a fine-tuned version of deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3560

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
3.926 0.1429 100 1.3948
0.6639 0.2857 200 0.4467
0.4304 0.4286 300 0.4228
0.4158 0.5714 400 0.4118
0.4046 0.7143 500 0.4031
0.3968 0.8571 600 0.3952
0.3925 1.0 700 0.3888
0.3864 1.1429 800 0.3834
0.3781 1.2857 900 0.3785
0.3759 1.4286 1000 0.3743
0.3696 1.5714 1100 0.3708
0.3679 1.7143 1200 0.3675
0.3664 1.8571 1300 0.3647
0.3637 2.0 1400 0.3626
0.3607 2.1429 1500 0.3607
0.3573 2.2857 1600 0.3592
0.3607 2.4286 1700 0.3580
0.3561 2.5714 1800 0.3571
0.357 2.7143 1900 0.3564
0.354 2.8571 2000 0.3561
0.3548 3.0 2100 0.3560

Framework versions

  • PEFT 0.14.0
  • Transformers 4.48.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0