AI & ML interests

None defined yet.

Recent Activity

sanjay73  updated a dataset 14 minutes ago
ai4bharat/Pralekha
sumanthd  updated a dataset about 2 hours ago
ai4bharat/BPCC
tahirjm  updated a model about 19 hours ago
ai4bharat/indic-conformer-600m-multilingual
View all activity

ai4bharat's activity

svp19 
updated a Space 1 day ago
albertvillanova 
posted an update 9 days ago
view post
Post
3555
🚀 New smolagents update: Safer Local Python Execution! 🦾🐍

With the latest release, we've added security checks to the local Python interpreter: every evaluation is now analyzed for dangerous builtins, modules, and functions. 🔒

Here's why this matters & what you need to know! 🧵👇

1️⃣ Why is local execution risky? ⚠️
AI agents that run arbitrary Python code can unintentionally (or maliciously) access system files, run unsafe commands, or exfiltrate data.

2️⃣ New Safety Layer in smolagents 🛡️
We now inspect every return value during execution:
✅ Allowed: Safe built-in types (e.g., numbers, strings, lists)
⛔ Blocked: Dangerous functions/modules (e.g., os.system, subprocess, exec, shutil)

3️⃣ Immediate Benefits 💡
- Prevent agents from accessing unsafe builtins
- Block unauthorized file or network access
- Reduce accidental security vulnerabilities

4️⃣ Security Disclaimer ⚠️
🚨 Despite these improvements, local Python execution is NEVER 100% safe. 🚨
If you need true isolation, use a remote sandboxed executor like Docker or E2B.

5️⃣ The Best Practice: Use Sandboxed Execution 🔐
For production-grade AI agents, we strongly recommend running code in a Docker or E2B sandbox to ensure complete isolation.

6️⃣ Upgrade Now & Stay Safe! 🚀
Check out the latest smolagents release and start building safer AI agents today.

🔗 https://github.com/huggingface/smolagents

What security measures do you take when running AI-generated code? Let’s discuss! 👇

#AI #smolagents #Python #Security
  • 2 replies
·
albertvillanova 
posted an update 10 days ago
view post
Post
3785
🚀 Big news for AI agents! With the latest release of smolagents, you can now securely execute Python code in sandboxed Docker or E2B environments. 🦾🔒

Here's why this is a game-changer for agent-based systems: 🧵👇

1️⃣ Security First 🔐
Running AI agents in unrestricted Python environments is risky! With sandboxing, your agents are isolated, preventing unintended file access, network abuse, or system modifications.

2️⃣ Deterministic & Reproducible Runs 📦
By running agents in containerized environments, you ensure that every execution happens in a controlled and predictable setting—no more environment mismatches or dependency issues!

3️⃣ Resource Control & Limits 🚦
Docker and E2B allow you to enforce CPU, memory, and execution time limits, so rogue or inefficient agents don’t spiral out of control.

4️⃣ Safer Code Execution in Production 🏭
Deploy AI agents confidently, knowing that any generated code runs in an ephemeral, isolated environment, protecting your host machine and infrastructure.

5️⃣ Easy to Integrate 🛠️
With smolagents, you can simply configure your agent to use Docker or E2B as its execution backend—no need for complex security setups!

6️⃣ Perfect for Autonomous AI Agents 🤖
If your AI agents generate and execute code dynamically, this is a must-have to avoid security pitfalls while enabling advanced automation.

⚡ Get started now: https://github.com/huggingface/smolagents

What will you build with smolagents? Let us know! 🚀💡
albertvillanova 
posted an update about 1 month ago
view post
Post
3791
🚀 Introducing @huggingface Open Deep-Research💥

In just 24 hours, we built an open-source agent that:
✅ Autonomously browse the web
✅ Search, scroll & extract info
✅ Download & manipulate files
✅ Run calculations on data

55% on GAIA validation set! Help us improve it!💡
https://huggingface.co/blog/open-deep-research
  • 3 replies
·
albertvillanova 
posted an update 2 months ago
albertvillanova 
posted an update 4 months ago
view post
Post
1815
🚨 How green is your model? 🌱 Introducing a new feature in the Comparator tool: Environmental Impact for responsible #LLM research!
👉 open-llm-leaderboard/comparator
Now, you can not only compare models by performance, but also by their environmental footprint!

🌍 The Comparator calculates CO₂ emissions during evaluation and shows key model characteristics: evaluation score, number of parameters, architecture, precision, type... 🛠️
Make informed decisions about your model's impact on the planet and join the movement towards greener AI!
albertvillanova 
posted an update 4 months ago
view post
Post
1607
🚀 New feature of the Comparator of the 🤗 Open LLM Leaderboard: now compare models with their base versions & derivatives (finetunes, adapters, etc.). Perfect for tracking how adjustments affect performance & seeing innovations in action. Dive deeper into the leaderboard!

🛠️ Here's how to use it:
1. Select your model from the leaderboard.
2. Load its model tree.
3. Choose any base & derived models (adapters, finetunes, merges, quantizations) for comparison.
4. Press Load.
See side-by-side performance metrics instantly!

Ready to dive in? 🏆 Try the 🤗 Open LLM Leaderboard Comparator now! See how models stack up against their base versions and derivatives to understand fine-tuning and other adjustments. Easier model analysis for better insights! Check it out here: open-llm-leaderboard/comparator 🌐
albertvillanova 
posted an update 5 months ago
view post
Post
3192
🚀 Exciting update! You can now compare multiple models side-by-side with the Hugging Face Open LLM Comparator! 📊

open-llm-leaderboard/comparator

Dive into multi-model evaluations, pinpoint the best model for your needs, and explore insights across top open LLMs all in one place. Ready to level up your model comparison game?
albertvillanova 
posted an update 5 months ago
view post
Post
1259
🚨 Instruct-tuning impacts models differently across families! Qwen2.5-72B-Instruct excels on IFEval but struggles with MATH-Hard, while Llama-3.1-70B-Instruct avoids MATH performance loss! Why? Can they follow the format in examples? 📊 Compare models: open-llm-leaderboard/comparator
albertvillanova 
posted an update 5 months ago
view post
Post
1960
Finding the Best SmolLM for Your Project

Need an LLM assistant but unsure which hashtag#smolLM to run locally? With so many models available, how can you decide which one suits your needs best? 🤔

If the model you’re interested in is evaluated on the Hugging Face Open LLM Leaderboard, there’s an easy way to compare them: use the model Comparator tool: open-llm-leaderboard/comparator
Let’s walk through an example👇

Let’s compare two solid options:
- Qwen2.5-1.5B-Instruct from Alibaba Cloud Qwen (1.5B params)
- gemma-2-2b-it from Google (2.5B params)

For an assistant, you want a model that’s great at instruction following. So, how do these two models stack up on the IFEval task?

What about other evaluations?
Both models are close in performance on many other tasks, showing minimal differences. Surprisingly, the 1.5B Qwen model performs just as well as the 2.5B Gemma in many areas, even though it's smaller in size! 📊

This is a great example of how parameter size isn’t everything. With efficient design and training, a smaller model like Qwen2.5-1.5B can match or even surpass larger models in certain tasks.

Looking for other comparisons? Drop your model suggestions below! 👇