BPCC Dataset
Training
Bharat Parallel Corpus Collection (BPCC) is a comprehensive and publicly available parallel corpus that includes both existing and new data for all 22 scheduled Indic languages. It is comprised of two parts: BPCC-Mined and BPCC-Human, totaling approximately 230 million bitext pairs. BPCC-Mined contains about 228 million pairs, with nearly 126 million pairs newly added as a part of this work. On the other hand, BPCC-Human consists of 2.2 million gold standard English-Indic pairs, with an additional 644K bitext pairs from English Wikipedia sentences (forming the BPCC-H-Wiki subset) and 139K sentences covering everyday use cases (forming the BPCC-H-Daily subset). It is worth highlighting that BPCC provides the first available datasets for 7 languages and significantly increases the available data for all languages covered.
You can find the contribution from different sources in the following table:
BPCC-Mined | Existing | Samanantar | 19.4M |
NLLB | 85M | ||
Newly Added | Samanantar++ | 121.6M | |
Comparable | 4.3M | ||
BPCC-Human | Existing | NLLB | 18.5K |
ILCI | 1.3M | ||
Massive | 115K | ||
Newly Added | Wiki | 644K | |
Daily | 139K |
Additionally, we provide augmented back-translation data generated by our intermediate IndicTrans2 models for training purposes. Please refer our paper for more details on the selection of sample proportions and sources.
English BT data (English Original) | 401.9M |
Indic BT data (Indic Original) | 400.9M |
Evaluation
IN22 test set is a newly created comprehensive benchmark for evaluating machine translation performance in multi-domain, n-way parallel contexts across 22 Indic languages. It has been created from three distinct subsets, namely IN22-Wiki, IN22-Web and IN22-Conv. The Wikipedia and Web sources subsets offer diverse content spanning news, entertainment, culture, legal, and India-centric topics. IN22-Wiki and IN22-Web have been combined and considered for evaluation purposes and released as IN22-Gen. Meanwhile, IN22-Conv the conversation domain subset is designed to assess translation quality in typical day-to-day conversational-style applications.
IN22-Gen (IN22-Wiki + IN22-Web) | 1024 sentences | 🤗 ai4bharat/IN22-Gen |
IN22-Conv | 1503 sentences | 🤗 ai4bharat/IN22-Conv |
LICENSE
The following table lists the licenses associated with the different artifacts released as a part of this work:
Artifact | LICENSE |
---|---|
Existing Mined Corpora (NLLB & Samanantar) | CC0 |
Existing Seed Corpora (NLLB-Seed, ILCI, MASSIVE) | CC0 |
Newly Added Mined Corpora (Samanantar++ & Comparable) | CC0 |
Newly Added Seed Corpora (BPCC-H-Wiki & BPCC-H-Daily) | CC-BY-4.0 |
Newly Created IN-22 test set (IN22-Gen & IN22-Conv) | CC-BY-4.0 |
Back-translation data (BPCC-BT) | CC0 |
Model checkpoints | MIT |
The mined corpora collection (BPCC-Mined), existing seed corpora (NLLB-Seed, ILCI, MASSIVE), Backtranslation data (BPCC-BT), are released under the following licensing scheme:
- We do not own any of the text from which this data has been extracted.
- We license the actual packaging of this data under the Creative Commons CC0 license (“no rights reserved”).
- To the extent possible under law, AI4Bharat has waived all copyright and related or neighboring rights to BPCC-Mined, existing seed corpora (NLLB-Seed, ILCI, MASSIVE) and BPCC-BT.
Citation
@article{gala2023indictrans,
title={IndicTrans2: Towards High-Quality and Accessible Machine Translation Models for all 22 Scheduled Indian Languages},
author={Jay Gala and Pranjal A Chitale and A K Raghavan and Varun Gumma and Sumanth Doddapaneni and Aswanth Kumar M and Janki Atul Nawale and Anupama Sujatha and Ratish Puduppully and Vivek Raghavan and Pratyush Kumar and Mitesh M Khapra and Raj Dabre and Anoop Kunchukuttan},
journal={Transactions on Machine Learning Research},
issn={2835-8856},
year={2023},
url={https://openreview.net/forum?id=vfT4YuzAYA},
note={}
}
- Downloads last month
- 2,392