|
--- |
|
license: apache-2.0 |
|
tags: |
|
- LoRA |
|
- 4-bit |
|
- BF16 |
|
- FlashAttn2 |
|
- Pokémon |
|
- EMA |
|
- fast-training |
|
- text-generation |
|
- chat |
|
- transformers |
|
language: en |
|
datasets: |
|
- ogmatrixllm/pokemon-lore-instructions |
|
finetuned_from: Qwen/Qwen2.5-7B-Instruct |
|
tasks: |
|
- text-generation |
|
metrics: |
|
- accuracy |
|
- code_eval |
|
base_model: |
|
- Qwen/Qwen2.5-Coder-7B-Instruct |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
# Qwen2.5-Coder-7B LoRA 4-bit BF16 w/ FlashAttn2, short seq=512 for faster iteration |
|
|
|
This is a LoRA-fused model based on **Qwen/Qwen2.5-7B-Instruct**. |
|
|
|
## Model Description |
|
|
|
- **Model Name**: Qwen2.5-Coder-7B LoRA 4-bit BF16 w/ FlashAttn2, short seq=512 for faster iteration |
|
- **Language**: en |
|
- **License**: apache-2.0 |
|
- **Dataset**: ogmatrixllm/pokemon-lore-instructions |
|
- **Tags**: LoRA, 4-bit, BF16, FlashAttn2, Pokémon, EMA, fast-training, text-generation, chat, transformers |
|
|
|
## Usage |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("ogmatrixllm/arcadex-llm") |
|
model = AutoModelForCausalLM.from_pretrained("ogmatrixllm/arcadex-llm") |
|
|
|
prompt = "Hello, world!" |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
outputs = model.generate(**inputs) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
``` |