File size: 1,268 Bytes
1cc199e 7a14701 e107337 1cc199e 80fa9fb 1cc199e 80fa9fb 1cc199e 80fa9fb 1cc199e 80fa9fb 1cc199e 80fa9fb 1cc199e 80fa9fb 1cc199e 80fa9fb 1cc199e 80fa9fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
---
license: apache-2.0
tags:
- LoRA
- 4-bit
- BF16
- FlashAttn2
- Pokémon
- EMA
- fast-training
- text-generation
- chat
- transformers
language: en
datasets:
- ogmatrixllm/pokemon-lore-instructions
finetuned_from: Qwen/Qwen2.5-7B-Instruct
tasks:
- text-generation
metrics:
- accuracy
- code_eval
base_model:
- Qwen/Qwen2.5-Coder-7B-Instruct
pipeline_tag: text-generation
---
# Qwen2.5-Coder-7B LoRA 4-bit BF16 w/ FlashAttn2, short seq=512 for faster iteration
This is a LoRA-fused model based on **Qwen/Qwen2.5-7B-Instruct**.
## Model Description
- **Model Name**: Qwen2.5-Coder-7B LoRA 4-bit BF16 w/ FlashAttn2, short seq=512 for faster iteration
- **Language**: en
- **License**: apache-2.0
- **Dataset**: ogmatrixllm/pokemon-lore-instructions
- **Tags**: LoRA, 4-bit, BF16, FlashAttn2, Pokémon, EMA, fast-training, text-generation, chat, transformers
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("ogmatrixllm/arcadex-llm")
model = AutoModelForCausalLM.from_pretrained("ogmatrixllm/arcadex-llm")
prompt = "Hello, world!"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
``` |