metadata
library_name: transformers
language:
- id
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- octava/extracted-id-subbed-video-v2
metrics:
- wer
model-index:
- name: Whisper Small Id - Inspirasi
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Extracted id video v2
type: octava/extracted-id-subbed-video-v2
config: id
split: test
args: 'config: id, split: test'
metrics:
- name: Wer
type: wer
value: 27.433834131820085
Whisper Small Id - Inspirasi
This model is a fine-tuned version of openai/whisper-small on the Extracted id video v2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.5409
- Wer: 27.4338
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0774 | 2.2424 | 1000 | 0.4203 | 29.0804 |
0.0129 | 4.4848 | 2000 | 0.4827 | 28.1222 |
0.0035 | 6.7273 | 3000 | 0.5214 | 28.4106 |
0.0014 | 8.9697 | 4000 | 0.5278 | 27.3594 |
0.001 | 11.2110 | 5000 | 0.5409 | 27.4338 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.2.0a0+81ea7a4
- Datasets 3.3.2
- Tokenizers 0.21.0