whisper-small-id-2 / README.md
octava's picture
End of training
4338c8c verified
metadata
library_name: transformers
language:
  - id
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - octava/extracted-id-subbed-video-v2
metrics:
  - wer
model-index:
  - name: Whisper Small Id - Inspirasi
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Extracted id video v2
          type: octava/extracted-id-subbed-video-v2
          config: id
          split: test
          args: 'config: id, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 27.433834131820085

Whisper Small Id - Inspirasi

This model is a fine-tuned version of openai/whisper-small on the Extracted id video v2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5409
  • Wer: 27.4338

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0774 2.2424 1000 0.4203 29.0804
0.0129 4.4848 2000 0.4827 28.1222
0.0035 6.7273 3000 0.5214 28.4106
0.0014 8.9697 4000 0.5278 27.3594
0.001 11.2110 5000 0.5409 27.4338

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.2.0a0+81ea7a4
  • Datasets 3.3.2
  • Tokenizers 0.21.0