--- library_name: transformers language: - id license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - octava/extracted-id-subbed-video-v2 metrics: - wer model-index: - name: Whisper Small Id - Inspirasi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Extracted id video v2 type: octava/extracted-id-subbed-video-v2 config: id split: test args: 'config: id, split: test' metrics: - name: Wer type: wer value: 27.433834131820085 --- # Whisper Small Id - Inspirasi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Extracted id video v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.5409 - Wer: 27.4338 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0774 | 2.2424 | 1000 | 0.4203 | 29.0804 | | 0.0129 | 4.4848 | 2000 | 0.4827 | 28.1222 | | 0.0035 | 6.7273 | 3000 | 0.5214 | 28.4106 | | 0.0014 | 8.9697 | 4000 | 0.5278 | 27.3594 | | 0.001 | 11.2110 | 5000 | 0.5409 | 27.4338 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.2.0a0+81ea7a4 - Datasets 3.3.2 - Tokenizers 0.21.0