|
# Global Context Vision Transformer (GC ViT) |
|
|
|
This model contains the official PyTorch implementation of **Global Context Vision Transformers** (ICML2023) \ |
|
\ |
|
[Global Context Vision |
|
Transformers](https://arxiv.org/pdf/2206.09959.pdf) \ |
|
[Ali Hatamizadeh](https://research.nvidia.com/person/ali-hatamizadeh), |
|
[Hongxu (Danny) Yin](https://scholar.princeton.edu/hongxu), |
|
[Greg Heinrich](https://developer.nvidia.com/blog/author/gheinrich/), |
|
[Jan Kautz](https://jankautz.com/), |
|
and [Pavlo Molchanov](https://www.pmolchanov.com/). |
|
|
|
GC ViT achieves state-of-the-art results across image classification, object detection and semantic segmentation tasks. On ImageNet-1K dataset for classification, GC ViT variants with `51M`, `90M` and `201M` parameters achieve `84.3`, `85.9` and `85.7` Top-1 accuracy, respectively, surpassing comparably-sized prior art such as CNN-based ConvNeXt and ViT-based Swin Transformer. |
|
|
|
<p align="center"> |
|
<img src="https://github.com/NVlabs/GCVit/assets/26806394/d1820d6d-3aef-470e-a1d3-af370f1c1f77" width=63% height=63% |
|
class="center"> |
|
</p> |
|
|
|
|
|
The architecture of GC ViT is demonstrated in the following: |
|
|
|
 |
|
|
|
|
|
## Introduction |
|
|
|
**GC ViT** leverages global context self-attention modules, joint with local self-attention, to effectively yet efficiently model both long and short-range spatial interactions, without the need for expensive |
|
operations such as computing attention masks or shifting local windows. |
|
|
|
|
|
<p align="center"> |
|
<img src="https://github.com/NVlabs/GCVit/assets/26806394/da64f22a-e7af-4577-8884-b08ba4e24e49" width=72% height=72% |
|
class="center"> |
|
</p> |
|
|
|
|
|
## ImageNet Benchmarks |
|
|
|
|
|
**ImageNet-1K Pretrained Models** |
|
|
|
<table> |
|
<tr> |
|
<th>Model Variant</th> |
|
<th>Acc@1</th> |
|
<th>#Params(M)</th> |
|
<th>FLOPs(G)</th> |
|
<th>Download</th> |
|
</tr> |
|
<tr> |
|
<td>GC ViT-XXT</td> |
|
<th>79.9</th> |
|
<td>12</td> |
|
<td>2.1</td> |
|
<td><a href="https://drive.google.com/uc?export=download&id=1apSIWQCa5VhWLJws8ugMTuyKzyayw4Eh">model</a></td> |
|
</tr> |
|
<tr> |
|
<td>GC ViT-XT</td> |
|
<th>82.0</th> |
|
<td>20</td> |
|
<td>2.6</td> |
|
<td><a href="https://drive.google.com/uc?export=download&id=1OgSbX73AXmE0beStoJf2Jtda1yin9t9m">model</a></td> |
|
</tr> |
|
<tr> |
|
<td>GC ViT-T</td> |
|
<th>83.5</th> |
|
<td>28</td> |
|
<td>4.7</td> |
|
<td><a href="https://drive.google.com/uc?export=download&id=11M6AsxKLhfOpD12Nm_c7lOvIIAn9cljy">model</a></td> |
|
</tr> |
|
<tr> |
|
<td>GC ViT-T2</td> |
|
<th>83.7</th> |
|
<td>34</td> |
|
<td>5.5</td> |
|
<td><a href="https://drive.google.com/uc?export=download&id=1cTD8VemWFiwAx0FB9cRMT-P4vRuylvmQ">model</a></td> |
|
</tr> |
|
<tr> |
|
<td>GC ViT-S</td> |
|
<th>84.3</th> |
|
<td>51</td> |
|
<td>8.5</td> |
|
<td><a href="https://drive.google.com/uc?export=download&id=1Nn6ABKmYjylyWC0I41Q3oExrn4fTzO9Y">model</a></td> |
|
</tr> |
|
<tr> |
|
<td>GC ViT-S2</td> |
|
<th>84.8</th> |
|
<td>68</td> |
|
<td>10.7</td> |
|
<td><a href="https://drive.google.com/uc?export=download&id=1E5TtYpTqILznjBLLBTlO5CGq343RbEan">model</a></td> |
|
</tr> |
|
<tr> |
|
<td>GC ViT-B</td> |
|
<th>85.0</th> |
|
<td>90</td> |
|
<td>14.8</td> |
|
<td><a href="https://drive.google.com/uc?export=download&id=1PF7qfxKLcv_ASOMetDP75n8lC50gaqyH">model</a></td> |
|
</tr> |
|
|
|
<tr> |
|
<td>GC ViT-L</td> |
|
<th>85.7</th> |
|
<td>201</td> |
|
<td>32.6</td> |
|
<td><a href="https://drive.google.com/uc?export=download&id=1Lkz1nWKTwCCUR7yQJM6zu_xwN1TR0mxS">model</a></td> |
|
</tr> |
|
|
|
</table> |
|
|
|
|
|
**ImageNet-21K Pretrained Models** |
|
|
|
<table> |
|
<tr> |
|
<th>Model Variant</th> |
|
<th>Resolution</th> |
|
<th>Acc@1</th> |
|
<th>#Params(M)</th> |
|
<th>FLOPs(G)</th> |
|
<th>Download</th> |
|
</tr> |
|
<tr> |
|
<td>GC ViT-L</td> |
|
<td>224 x 224</td> |
|
<th>86.6</th> |
|
<td>201</td> |
|
<td>32.6</td> |
|
<td><a href="https://drive.google.com/uc?export=download&id=1maGDr6mJkLyRTUkspMzCgSlhDzNRFGEf">model</a></td> |
|
</tr> |
|
<tr> |
|
<td>GC ViT-L</td> |
|
<td>384 x 384</td> |
|
<th>87.4</th> |
|
<td>201</td> |
|
<td>120.4</td> |
|
<td><a href="https://drive.google.com/uc?export=download&id=1P-IEhvQbJ3FjnunVkM1Z9dEpKw-tsuWv">model</a></td> |
|
</tr> |
|
|
|
</table> |
|
|
|
|
|
## Citation |
|
|
|
Please consider citing GC ViT paper if it is useful for your work: |
|
|
|
``` |
|
@inproceedings{hatamizadeh2023global, |
|
title={Global context vision transformers}, |
|
author={Hatamizadeh, Ali and Yin, Hongxu and Heinrich, Greg and Kautz, Jan and Molchanov, Pavlo}, |
|
booktitle={International Conference on Machine Learning}, |
|
pages={12633--12646}, |
|
year={2023}, |
|
organization={PMLR} |
|
} |
|
``` |
|
|
|
## Licenses |
|
|
|
Copyright © 2023, NVIDIA Corporation. All rights reserved. |
|
|
|
This work is made available under the Nvidia Source Code License-NC. Click [here](LICENSE) to view a copy of this license. |
|
|
|
The pre-trained models are shared under [CC-BY-NC-SA-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/). If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original. |
|
|
|
For license information regarding the timm, please refer to its [repository](https://github.com/rwightman/pytorch-image-models). |
|
|
|
For license information regarding the ImageNet dataset, please refer to the ImageNet [official website](https://www.image-net.org/). |