|
--- |
|
tags: |
|
- vllm |
|
- vision |
|
- fp8 |
|
license: apache-2.0 |
|
license_link: >- |
|
https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md |
|
language: |
|
- en |
|
base_model: Qwen/Qwen2.5-VL-7B-Instruct |
|
library_name: transformers |
|
--- |
|
|
|
# Qwen2.5-VL-7B-Instruct-FP8-Dynamic |
|
|
|
## Model Overview |
|
- **Model Architecture:** Qwen2.5-VL-7B-Instruct |
|
- **Input:** Vision-Text |
|
- **Output:** Text |
|
- **Model Optimizations:** |
|
- **Weight quantization:** FP8 |
|
- **Activation quantization:** FP8 |
|
- **Release Date:** 2/24/2025 |
|
- **Version:** 1.0 |
|
- **Model Developers:** Neural Magic |
|
|
|
Quantized version of [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct). |
|
|
|
### Model Optimizations |
|
|
|
This model was obtained by quantizing the weights of [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) to FP8 data type, ready for inference with vLLM >= 0.5.2. |
|
|
|
## Deployment |
|
|
|
### Use with vLLM |
|
|
|
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. |
|
|
|
```python |
|
from vllm.assets.image import ImageAsset |
|
from vllm import LLM, SamplingParams |
|
|
|
# prepare model |
|
llm = LLM( |
|
model="neuralmagic/Qwen2.5-VL-7B-Instruct-FP8-Dynamic", |
|
trust_remote_code=True, |
|
max_model_len=4096, |
|
max_num_seqs=2, |
|
) |
|
|
|
# prepare inputs |
|
question = "What is the content of this image?" |
|
inputs = { |
|
"prompt": f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n", |
|
"multi_modal_data": { |
|
"image": ImageAsset("cherry_blossom").pil_image.convert("RGB") |
|
}, |
|
} |
|
|
|
# generate response |
|
print("========== SAMPLE GENERATION ==============") |
|
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64)) |
|
print(f"PROMPT : {outputs[0].prompt}") |
|
print(f"RESPONSE: {outputs[0].outputs[0].text}") |
|
print("==========================================") |
|
``` |
|
|
|
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. |
|
|
|
## Creation |
|
|
|
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below as part a multimodal announcement blog. |
|
|
|
<details> |
|
<summary>Model Creation Code</summary> |
|
|
|
```python |
|
import requests |
|
import torch |
|
from PIL import Image |
|
from transformers import AutoProcessor |
|
from llmcompressor.transformers import oneshot |
|
from llmcompressor.transformers.tracing import ( |
|
TraceableQwen2_5_VLForConditionalGeneration, |
|
) |
|
from llmcompressor.modifiers.quantization import QuantizationModifier |
|
|
|
# Load model. |
|
model_id = Qwen/Qwen2.5-VL-7B-Instruct |
|
model = TraceableQwen2_5_VLForConditionalGeneration.from_pretrained( |
|
model_id, device_map="auto", torch_dtype="auto" |
|
) |
|
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) |
|
|
|
# Recipe |
|
recipe = [ |
|
QuantizationModifier( |
|
targets="Linear", |
|
scheme="FP8_DYNAMIC", |
|
sequential_targets=["MistralDecoderLayer"], |
|
ignore=["re:.*lm_head", "re:vision_tower.*", "re:multi_modal_projector.*"], |
|
), |
|
] |
|
|
|
SAVE_DIR=f"{model_id.split('/')[1]}-FP8-Dynamic" |
|
|
|
# Perform oneshot |
|
oneshot( |
|
model=model, |
|
recipe=recipe, |
|
trust_remote_code_model=True, |
|
output_dir=SAVE_DIR |
|
) |
|
|
|
|
|
``` |
|
</details> |
|
|
|
## Evaluation |
|
|
|
The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard), OpenLLM Leaderboard [V2](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/) and on [HumanEval](https://github.com/neuralmagic/evalplus), using the following commands: |
|
|
|
<details> |
|
<summary>Evaluation Commands</summary> |
|
|
|
``` |
|
``` |
|
|
|
</details> |
|
|
|
### Accuracy |
|
|
|
## Inference Performance |
|
|
|
|
|
This model achieves up to xxx speedup in single-stream deployment and up to xxx speedup in multi-stream asynchronous deployment, depending on hardware and use-case scenario. |
|
The following performance benchmarks were conducted with [vLLM](https://docs.vllm.ai/en/latest/) version 0.7.2, and [GuideLLM](https://github.com/neuralmagic/guidellm). |
|
|
|
<details> |
|
<summary>Benchmarking Command</summary> |
|
``` |
|
guidellm --model neuralmagic/Qwen2.5-VL-7B-Instruct-FP8-Dynamic --target "http://localhost:8000/v1" --data-type emulated --data prompt_tokens=<prompt_tokens>,generated_tokens=<generated_tokens>,images=<num_images>,width=<image_width>,height=<image_height> --max seconds 120 --backend aiohttp_server |
|
``` |
|
|
|
</details> |
|
|
|
|
|
### Single-stream performance (measured with vLLM version 0.7.2) |
|
|
|
<table border="1" class="dataframe"> |
|
<thead> |
|
<tr> |
|
<th></th> |
|
<th></th> |
|
<th></th> |
|
<th style="text-align: center;" colspan="2" >Document Visual Question Answering<br>1680W x 2240H<br>64/128</th> |
|
<th style="text-align: center;" colspan="2" >Visual Reasoning <br>640W x 480H<br>128/128</th> |
|
<th style="text-align: center;" colspan="2" >Image Captioning<br>480W x 360H<br>0/128</th> |
|
</tr> |
|
<tr> |
|
<th>Hardware</th> |
|
<th>Model</th> |
|
<th>Average Cost Reduction</th> |
|
<th>Latency (s)</th> |
|
<th>QPD</th> |
|
<th>Latency (s)th> |
|
<th>QPD</th> |
|
<th>Latency (s)</th> |
|
<th>QPD</th> |
|
</tr> |
|
</thead> |
|
<tbody style="text-align: center"> |
|
<tr> |
|
<th rowspan="3" valign="top">A100x1</th> |
|
<th>Qwen/Qwen2.5-VL-7B-Instruct</th> |
|
<td></td> |
|
<td>2.8</td> |
|
<td>707</td> |
|
<td>1.7</td> |
|
<td>1162</td> |
|
<td>1.7</td> |
|
<td>1198</td> |
|
</tr> |
|
<tr> |
|
<th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w8a8</th> |
|
<td>1.24</td> |
|
<td>2.4</td> |
|
<td>851</td> |
|
<td>1.4</td> |
|
<td>1454</td> |
|
<td>1.3</td> |
|
<td>1512</td> |
|
</tr> |
|
<tr> |
|
<th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16</th> |
|
<td>1.49</td> |
|
<td>2.2</td> |
|
<td>912</td> |
|
<td>1.1</td> |
|
<td>1791</td> |
|
<td>1.0</td> |
|
<td>1950</td> |
|
</tr> |
|
<tr> |
|
<th rowspan="3" valign="top">H100x1</th> |
|
<th>Qwen/Qwen2.5-VL-7B-Instruct</th> |
|
<td></td> |
|
<td>2.0</td> |
|
<td>557</td> |
|
<td>1.2</td> |
|
<td>919</td> |
|
<td>1.2</td> |
|
<td>941</td> |
|
</tr> |
|
<tr> |
|
<th>neuralmagic/Qwen2.5-VL-7B-Instruct-FP8-Dynamic</th> |
|
<td>1.28</td> |
|
<td>1.6</td> |
|
<td>698</td> |
|
<td>0.9</td> |
|
<td>1181</td> |
|
<td>0.9</td> |
|
<td>1219</td> |
|
</tr> |
|
<tr> |
|
<th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16</th> |
|
<td>1.28</td> |
|
<td>1.6</td> |
|
<td>686</td> |
|
<td>0.9</td> |
|
<td>1191</td> |
|
<td>0.9</td> |
|
<td>1228</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
|
|
|
|
### Multi-stream asynchronous performance (measured with vLLM version 0.7.2) |
|
|
|
<table border="1" class="dataframe"> |
|
<thead> |
|
<tr> |
|
<th></th> |
|
<th></th> |
|
<th></th> |
|
<th style="text-align: center;" colspan="2" >Document Visual Question Answering<br>1680W x 2240H<br>64/128</th> |
|
<th style="text-align: center;" colspan="2" >Visual Reasoning <br>640W x 480H<br>128/128</th> |
|
<th style="text-align: center;" colspan="2" >Image Captioning<br>480W x 360H<br>0/128</th> |
|
</tr> |
|
<tr> |
|
<th>Hardware</th> |
|
<th>Model</th> |
|
<th>Average Cost Reduction</th> |
|
<th>Maximum throughput (QPS)</th> |
|
<th>QPD</th> |
|
<th>Maximum throughput (QPS)</th> |
|
<th>QPD</th> |
|
<th>Maximum throughput (QPS)</th> |
|
<th>QPD</th> |
|
</tr> |
|
</thead> |
|
<tbody style="text-align: center"> |
|
<tr> |
|
<th rowspan="3" valign="top">A100x1</th> |
|
<th>Qwen/Qwen2.5-VL-7B-Instruct-quantized.</th> |
|
<td></td> |
|
<td>0.7</td> |
|
<td>1347</td> |
|
<td>2.6</td> |
|
<td>5221</td> |
|
<td>3.0</td> |
|
<td>6122</td> |
|
</tr> |
|
<tr> |
|
<th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w8a8</th> |
|
<td>1.27</td> |
|
<td>0.8</td> |
|
<td>1639</td> |
|
<td>3.4</td> |
|
<td>6851</td> |
|
<td>3.9</td> |
|
<td>7918</td> |
|
</tr> |
|
<tr> |
|
<th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16</th> |
|
<td>1.21</td> |
|
<td>0.7</td> |
|
<td>1314</td> |
|
<td>3.0</td> |
|
<td>5983</td> |
|
<td>4.6</td> |
|
<td>9206</td> |
|
</tr> |
|
<tr> |
|
<th rowspan="3" valign="top">H100x1</th> |
|
<th>Qwen/Qwen2.5-VL-7B-Instruct</th> |
|
<td></td> |
|
<td>0.9</td> |
|
<td>969</td> |
|
<td>3.1</td> |
|
<td>3358</td> |
|
<td>3.3</td> |
|
<td>3615</td> |
|
</tr> |
|
<tr> |
|
<th>neuralmagic/Qwen2.5-VL-7B-Instruct-FP8-Dynamic</th> |
|
<td>1.29</td> |
|
<td>1.2</td> |
|
<td>1331</td> |
|
<td>3.8</td> |
|
<td>4109</td> |
|
<td>4.2</td> |
|
<td>4598</td> |
|
</tr> |
|
<tr> |
|
<th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16</th> |
|
<td>1.28</td> |
|
<td>1.2</td> |
|
<td>1298</td> |
|
<td>3.8</td> |
|
<td>4190</td> |
|
<td>4.2</td> |
|
<td>4573</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|