File size: 8,809 Bytes
06f57b4 9c998f3 06f57b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
---
tags:
- vllm
- vision
- fp8
license: apache-2.0
license_link: >-
https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md
language:
- en
base_model: Qwen/Qwen2.5-VL-7B-Instruct
library_name: transformers
---
# Qwen2.5-VL-7B-Instruct-FP8-Dynamic
## Model Overview
- **Model Architecture:** Qwen2.5-VL-7B-Instruct
- **Input:** Vision-Text
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** FP8
- **Activation quantization:** FP8
- **Release Date:** 2/24/2025
- **Version:** 1.0
- **Model Developers:** Neural Magic
Quantized version of [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct).
### Model Optimizations
This model was obtained by quantizing the weights of [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) to FP8 data type, ready for inference with vLLM >= 0.5.2.
## Deployment
### Use with vLLM
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from vllm.assets.image import ImageAsset
from vllm import LLM, SamplingParams
# prepare model
llm = LLM(
model="neuralmagic/Qwen2.5-VL-7B-Instruct-FP8-Dynamic",
trust_remote_code=True,
max_model_len=4096,
max_num_seqs=2,
)
# prepare inputs
question = "What is the content of this image?"
inputs = {
"prompt": f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n",
"multi_modal_data": {
"image": ImageAsset("cherry_blossom").pil_image.convert("RGB")
},
}
# generate response
print("========== SAMPLE GENERATION ==============")
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64))
print(f"PROMPT : {outputs[0].prompt}")
print(f"RESPONSE: {outputs[0].outputs[0].text}")
print("==========================================")
```
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
## Creation
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below as part a multimodal announcement blog.
<details>
<summary>Model Creation Code</summary>
```python
import requests
import torch
from PIL import Image
from transformers import AutoProcessor
from llmcompressor.transformers import oneshot
from llmcompressor.transformers.tracing import (
TraceableQwen2_5_VLForConditionalGeneration,
)
from llmcompressor.modifiers.quantization import QuantizationModifier
# Load model.
model_id = Qwen/Qwen2.5-VL-7B-Instruct
model = TraceableQwen2_5_VLForConditionalGeneration.from_pretrained(
model_id, device_map="auto", torch_dtype="auto"
)
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
# Recipe
recipe = [
QuantizationModifier(
targets="Linear",
scheme="FP8_DYNAMIC",
sequential_targets=["MistralDecoderLayer"],
ignore=["re:.*lm_head", "re:vision_tower.*", "re:multi_modal_projector.*"],
),
]
SAVE_DIR=f"{model_id.split('/')[1]}-FP8-Dynamic"
# Perform oneshot
oneshot(
model=model,
recipe=recipe,
trust_remote_code_model=True,
output_dir=SAVE_DIR
)
```
</details>
## Evaluation
The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard), OpenLLM Leaderboard [V2](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/) and on [HumanEval](https://github.com/neuralmagic/evalplus), using the following commands:
<details>
<summary>Evaluation Commands</summary>
```
```
</details>
### Accuracy
## Inference Performance
This model achieves up to xxx speedup in single-stream deployment and up to xxx speedup in multi-stream asynchronous deployment, depending on hardware and use-case scenario.
The following performance benchmarks were conducted with [vLLM](https://docs.vllm.ai/en/latest/) version 0.7.2, and [GuideLLM](https://github.com/neuralmagic/guidellm).
<details>
<summary>Benchmarking Command</summary>
```
guidellm --model neuralmagic/Qwen2.5-VL-7B-Instruct-FP8-Dynamic --target "http://localhost:8000/v1" --data-type emulated --data prompt_tokens=<prompt_tokens>,generated_tokens=<generated_tokens>,images=<num_images>,width=<image_width>,height=<image_height> --max seconds 120 --backend aiohttp_server
```
</details>
### Single-stream performance (measured with vLLM version 0.7.2)
<table border="1" class="dataframe">
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th style="text-align: center;" colspan="2" >Document Visual Question Answering<br>1680W x 2240H<br>64/128</th>
<th style="text-align: center;" colspan="2" >Visual Reasoning <br>640W x 480H<br>128/128</th>
<th style="text-align: center;" colspan="2" >Image Captioning<br>480W x 360H<br>0/128</th>
</tr>
<tr>
<th>Hardware</th>
<th>Model</th>
<th>Average Cost Reduction</th>
<th>Latency (s)</th>
<th>QPD</th>
<th>Latency (s)th>
<th>QPD</th>
<th>Latency (s)</th>
<th>QPD</th>
</tr>
</thead>
<tbody style="text-align: center">
<tr>
<th rowspan="3" valign="top">A100x1</th>
<th>Qwen/Qwen2.5-VL-7B-Instruct</th>
<td></td>
<td>2.8</td>
<td>707</td>
<td>1.7</td>
<td>1162</td>
<td>1.7</td>
<td>1198</td>
</tr>
<tr>
<th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w8a8</th>
<td>1.24</td>
<td>2.4</td>
<td>851</td>
<td>1.4</td>
<td>1454</td>
<td>1.3</td>
<td>1512</td>
</tr>
<tr>
<th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16</th>
<td>1.49</td>
<td>2.2</td>
<td>912</td>
<td>1.1</td>
<td>1791</td>
<td>1.0</td>
<td>1950</td>
</tr>
<tr>
<th rowspan="3" valign="top">H100x1</th>
<th>Qwen/Qwen2.5-VL-7B-Instruct</th>
<td></td>
<td>2.0</td>
<td>557</td>
<td>1.2</td>
<td>919</td>
<td>1.2</td>
<td>941</td>
</tr>
<tr>
<th>neuralmagic/Qwen2.5-VL-7B-Instruct-FP8-Dynamic</th>
<td>1.28</td>
<td>1.6</td>
<td>698</td>
<td>0.9</td>
<td>1181</td>
<td>0.9</td>
<td>1219</td>
</tr>
<tr>
<th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16</th>
<td>1.28</td>
<td>1.6</td>
<td>686</td>
<td>0.9</td>
<td>1191</td>
<td>0.9</td>
<td>1228</td>
</tr>
</tbody>
</table>
### Multi-stream asynchronous performance (measured with vLLM version 0.7.2)
<table border="1" class="dataframe">
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th style="text-align: center;" colspan="2" >Document Visual Question Answering<br>1680W x 2240H<br>64/128</th>
<th style="text-align: center;" colspan="2" >Visual Reasoning <br>640W x 480H<br>128/128</th>
<th style="text-align: center;" colspan="2" >Image Captioning<br>480W x 360H<br>0/128</th>
</tr>
<tr>
<th>Hardware</th>
<th>Model</th>
<th>Average Cost Reduction</th>
<th>Maximum throughput (QPS)</th>
<th>QPD</th>
<th>Maximum throughput (QPS)</th>
<th>QPD</th>
<th>Maximum throughput (QPS)</th>
<th>QPD</th>
</tr>
</thead>
<tbody style="text-align: center">
<tr>
<th rowspan="3" valign="top">A100x1</th>
<th>Qwen/Qwen2.5-VL-7B-Instruct-quantized.</th>
<td></td>
<td>0.7</td>
<td>1347</td>
<td>2.6</td>
<td>5221</td>
<td>3.0</td>
<td>6122</td>
</tr>
<tr>
<th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w8a8</th>
<td>1.27</td>
<td>0.8</td>
<td>1639</td>
<td>3.4</td>
<td>6851</td>
<td>3.9</td>
<td>7918</td>
</tr>
<tr>
<th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16</th>
<td>1.21</td>
<td>0.7</td>
<td>1314</td>
<td>3.0</td>
<td>5983</td>
<td>4.6</td>
<td>9206</td>
</tr>
<tr>
<th rowspan="3" valign="top">H100x1</th>
<th>Qwen/Qwen2.5-VL-7B-Instruct</th>
<td></td>
<td>0.9</td>
<td>969</td>
<td>3.1</td>
<td>3358</td>
<td>3.3</td>
<td>3615</td>
</tr>
<tr>
<th>neuralmagic/Qwen2.5-VL-7B-Instruct-FP8-Dynamic</th>
<td>1.29</td>
<td>1.2</td>
<td>1331</td>
<td>3.8</td>
<td>4109</td>
<td>4.2</td>
<td>4598</td>
</tr>
<tr>
<th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16</th>
<td>1.28</td>
<td>1.2</td>
<td>1298</td>
<td>3.8</td>
<td>4190</td>
<td>4.2</td>
<td>4573</td>
</tr>
</tbody>
</table>
|