bert-finetuned-ner / README.md
naufalso's picture
update model card README.md
e6c0658
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.93732429303787
- name: Recall
type: recall
value: 0.9538875799394143
- name: F1
type: f1
value: 0.94553340562182
- name: Accuracy
type: accuracy
value: 0.9866809913463237
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0998
- Precision: 0.9373
- Recall: 0.9539
- F1: 0.9455
- Accuracy: 0.9867
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0878 | 1.0 | 1756 | 0.0694 | 0.9166 | 0.9288 | 0.9227 | 0.9819 |
| 0.0366 | 2.0 | 3512 | 0.0718 | 0.9247 | 0.9467 | 0.9356 | 0.9850 |
| 0.0247 | 3.0 | 5268 | 0.0727 | 0.9220 | 0.9435 | 0.9326 | 0.9844 |
| 0.0153 | 4.0 | 7024 | 0.0746 | 0.9384 | 0.9532 | 0.9457 | 0.9860 |
| 0.0107 | 5.0 | 8780 | 0.0874 | 0.9260 | 0.9475 | 0.9366 | 0.9847 |
| 0.0043 | 6.0 | 10536 | 0.0898 | 0.9373 | 0.9517 | 0.9445 | 0.9863 |
| 0.0041 | 7.0 | 12292 | 0.0984 | 0.9371 | 0.9507 | 0.9439 | 0.9858 |
| 0.0031 | 8.0 | 14048 | 0.0982 | 0.9327 | 0.9515 | 0.9420 | 0.9856 |
| 0.0014 | 9.0 | 15804 | 0.0987 | 0.9361 | 0.9544 | 0.9452 | 0.9860 |
| 0.0006 | 10.0 | 17560 | 0.0998 | 0.9373 | 0.9539 | 0.9455 | 0.9867 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2