--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.93732429303787 - name: Recall type: recall value: 0.9538875799394143 - name: F1 type: f1 value: 0.94553340562182 - name: Accuracy type: accuracy value: 0.9866809913463237 --- # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0998 - Precision: 0.9373 - Recall: 0.9539 - F1: 0.9455 - Accuracy: 0.9867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0878 | 1.0 | 1756 | 0.0694 | 0.9166 | 0.9288 | 0.9227 | 0.9819 | | 0.0366 | 2.0 | 3512 | 0.0718 | 0.9247 | 0.9467 | 0.9356 | 0.9850 | | 0.0247 | 3.0 | 5268 | 0.0727 | 0.9220 | 0.9435 | 0.9326 | 0.9844 | | 0.0153 | 4.0 | 7024 | 0.0746 | 0.9384 | 0.9532 | 0.9457 | 0.9860 | | 0.0107 | 5.0 | 8780 | 0.0874 | 0.9260 | 0.9475 | 0.9366 | 0.9847 | | 0.0043 | 6.0 | 10536 | 0.0898 | 0.9373 | 0.9517 | 0.9445 | 0.9863 | | 0.0041 | 7.0 | 12292 | 0.0984 | 0.9371 | 0.9507 | 0.9439 | 0.9858 | | 0.0031 | 8.0 | 14048 | 0.0982 | 0.9327 | 0.9515 | 0.9420 | 0.9856 | | 0.0014 | 9.0 | 15804 | 0.0987 | 0.9361 | 0.9544 | 0.9452 | 0.9860 | | 0.0006 | 10.0 | 17560 | 0.0998 | 0.9373 | 0.9539 | 0.9455 | 0.9867 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2