nandavikas16's picture
Model save
7993745 verified
|
raw
history blame
3.34 kB
metadata
license: mit
base_model: facebook/bart-large-cnn
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: bart-large-cnn-finetuned-scope-summarization
    results: []

bart-large-cnn-finetuned-scope-summarization

This model is a fine-tuned version of facebook/bart-large-cnn on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0552
  • Rouge1: 49.8374
  • Rouge2: 38.0885
  • Rougel: 42.6985
  • Rougelsum: 42.4809

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
0.6831 1.0 43 0.3928 40.6965 25.3494 30.1716 29.9938
0.3578 2.0 86 0.3598 43.284 27.9071 32.9941 32.9077
0.3302 3.0 129 0.3362 45.2375 30.4709 34.8733 34.6801
0.309 4.0 172 0.3136 44.928 30.8601 34.7804 34.6754
0.2948 5.0 215 0.2919 44.5169 30.2429 34.5979 34.4672
0.2841 6.0 258 0.2755 45.7172 31.6555 34.9668 34.9069
0.268 7.0 301 0.2618 46.4085 32.782 35.804 35.6348
0.252 8.0 344 0.2424 47.8634 33.6728 36.9559 36.9081
0.2405 9.0 387 0.2286 46.8182 34.4363 37.7534 37.6356
0.2255 10.0 430 0.2276 46.8516 33.3166 37.6246 37.5024
0.2125 11.0 473 0.1946 47.6772 33.9627 37.8554 37.7735
0.1918 12.0 516 0.1682 46.851 33.6098 38.2906 38.24
0.1726 13.0 559 0.1442 48.8833 36.4235 39.4263 39.1955
0.152 14.0 602 0.1305 50.5835 39.2008 43.3793 43.1671
0.1344 15.0 645 0.1109 47.3517 35.4446 38.0845 38.0578
0.116 16.0 688 0.0842 48.9774 37.6705 41.6306 41.4792
0.1007 17.0 731 0.0762 49.9775 38.4186 42.647 42.4334
0.0899 18.0 774 0.0623 50.1358 38.9943 43.4025 43.1603
0.0805 19.0 817 0.0571 51.5974 40.1928 44.1821 43.9354
0.0753 20.0 860 0.0552 49.8374 38.0885 42.6985 42.4809

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2