File size: 3,337 Bytes
e052ce1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7993745
 
 
 
 
e052ce1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7993745
 
e052ce1
 
 
 
 
 
 
 
 
7993745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e052ce1
 
 
 
f14ee4b
e052ce1
f14ee4b
e052ce1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: mit
base_model: facebook/bart-large-cnn
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-large-cnn-finetuned-scope-summarization
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart-large-cnn-finetuned-scope-summarization

This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0552
- Rouge1: 49.8374
- Rouge2: 38.0885
- Rougel: 42.6985
- Rougelsum: 42.4809

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 0.6831        | 1.0   | 43   | 0.3928          | 40.6965 | 25.3494 | 30.1716 | 29.9938   |
| 0.3578        | 2.0   | 86   | 0.3598          | 43.284  | 27.9071 | 32.9941 | 32.9077   |
| 0.3302        | 3.0   | 129  | 0.3362          | 45.2375 | 30.4709 | 34.8733 | 34.6801   |
| 0.309         | 4.0   | 172  | 0.3136          | 44.928  | 30.8601 | 34.7804 | 34.6754   |
| 0.2948        | 5.0   | 215  | 0.2919          | 44.5169 | 30.2429 | 34.5979 | 34.4672   |
| 0.2841        | 6.0   | 258  | 0.2755          | 45.7172 | 31.6555 | 34.9668 | 34.9069   |
| 0.268         | 7.0   | 301  | 0.2618          | 46.4085 | 32.782  | 35.804  | 35.6348   |
| 0.252         | 8.0   | 344  | 0.2424          | 47.8634 | 33.6728 | 36.9559 | 36.9081   |
| 0.2405        | 9.0   | 387  | 0.2286          | 46.8182 | 34.4363 | 37.7534 | 37.6356   |
| 0.2255        | 10.0  | 430  | 0.2276          | 46.8516 | 33.3166 | 37.6246 | 37.5024   |
| 0.2125        | 11.0  | 473  | 0.1946          | 47.6772 | 33.9627 | 37.8554 | 37.7735   |
| 0.1918        | 12.0  | 516  | 0.1682          | 46.851  | 33.6098 | 38.2906 | 38.24     |
| 0.1726        | 13.0  | 559  | 0.1442          | 48.8833 | 36.4235 | 39.4263 | 39.1955   |
| 0.152         | 14.0  | 602  | 0.1305          | 50.5835 | 39.2008 | 43.3793 | 43.1671   |
| 0.1344        | 15.0  | 645  | 0.1109          | 47.3517 | 35.4446 | 38.0845 | 38.0578   |
| 0.116         | 16.0  | 688  | 0.0842          | 48.9774 | 37.6705 | 41.6306 | 41.4792   |
| 0.1007        | 17.0  | 731  | 0.0762          | 49.9775 | 38.4186 | 42.647  | 42.4334   |
| 0.0899        | 18.0  | 774  | 0.0623          | 50.1358 | 38.9943 | 43.4025 | 43.1603   |
| 0.0805        | 19.0  | 817  | 0.0571          | 51.5974 | 40.1928 | 44.1821 | 43.9354   |
| 0.0753        | 20.0  | 860  | 0.0552          | 49.8374 | 38.0885 | 42.6985 | 42.4809   |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2