|
--- |
|
base_model: mini1013/master_domain |
|
library_name: setfit |
|
metrics: |
|
- metric |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: 한글과컴퓨터 한컴오피스 2024 한글 Open 라이선스 [기업용/영구/2User이상] 한컴오피스 2024 (한글/한셀/한쇼) (주)유비소프트웨어 |
|
- text: 한글과컴퓨터 한글 2022 (기업용/패키지/USB방식) 아이코다(주) |
|
- text: 한글과컴퓨터 한컴독스 기업용 ESD 1년 사용 (주)대성클라우드 |
|
- text: '[한글과컴퓨터] 한컴오피스 2022 [기업용/패키지/1년사용/제품키배송형] (주)컴퓨존' |
|
- text: '[마이크로소프트코리아] MS Windows 7 Professional DSP 한글 64bit/정품라벨 (주)소프트존' |
|
inference: true |
|
model-index: |
|
- name: SetFit with mini1013/master_domain |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: metric |
|
value: 1.0 |
|
name: Metric |
|
--- |
|
|
|
# SetFit with mini1013/master_domain |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 6 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 4 | <ul><li>'정품 스토어 MS Windows 11 Home 한글 FPP 윈도우11 홈 설치USB 패키지 인증키 (주)에스비코어'</li><li>'윈도우11 프로 FPP(USB) 노트북 업그레이드 전용상품 주식회사 이좋은세상'</li><li>'[MS코리아정품] Windows 11 Pro FPP 한글 처음사용자용 영구 제품키 주식회사 레오솔루션'</li></ul> | |
|
| 1 | <ul><li>'[Adobe] Photoshop for teams [기업용/라이선스/1년사용] [1개~9개 구매시(1개당 가격)] [발송 3~7일 소요] 갱신 (주)컴퓨존'</li><li>'Movavi Video Editor 2024 기업용 라이선스 / 모바비 주식회사 글래드소프트'</li><li>'Movavi Video Suite 2024 공공기관용 라이선스 / 모바비2024 메모리콕'</li></ul> | |
|
| 2 | <ul><li>'안랩 V3 Net for Windows Server 9.0 DSP (1년) (주)위프로소프트'</li><li>'안랩 V3 Net for Windows Server 9.0 (기업용/DSP/1년) 아이코다(주)'</li><li>'안랩 V3 Net for Unix Server (기업용 1년사용) 아이코다(주)'</li></ul> | |
|
| 3 | <ul><li>'[문자발송]한컴독스 개인용 1년(구독형 한컴오피스) / 윈도우 맥용 설치 파일 지원 주식회사 지엘스토어'</li><li>'한컴독스 개인용 1년 제품키배송형(구독형 한컴오피스) / 윈도우 맥용 설치 파일 지원 확인 주식회사 라이프큐브'</li><li>'[마이크로소프트] Office 2019 Home & Student PKC [가정용/패키지/한글] 택배 발송 오시리스랩 주식회사'</li></ul> | |
|
| 5 | <ul><li>'[1분발송]리훈 오늘기억 일기장 다이어리 굿노트 아이패드 PDF 속지 3년 감사 1.오른손잡이용_1.3년다이어리 주식회사 리훈 (RIHOON CO., LTD.)'</li><li>'[스티커2종] 24년 오리지날 굿노트 디지털 속지 - 데일리 가로형(1D2P 형식) (아이패드 갤럭시탭 하이퍼링크 PDF 속지) (주)프랭클린 플래너 코리아'</li><li>'[1분발송]리훈 하고싶은말 일기장 다이어리 굿노트 아이패드 PDF 속지 날짜형(23년10월-24년12월)_오른손잡이용 주식회사 리훈 (RIHOON CO., LTD.)'</li></ul> | |
|
| 0 | <ul><li>'Radmin 3 Standard license 기업용/ 영구(ESD) (주)삼경엠'</li><li>'Radmin 3 - 50 Licenses Pack 기업용 라이선스 /알어드민 / 원격지원 / 50대설치 메모리콕'</li><li>'Radmin 3 Standard 기업용 라이선스 /알어드민 / 원격지원 메모리콕'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Metric | |
|
|:--------|:-------| |
|
| **all** | 1.0 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("mini1013/master_cate_el12") |
|
# Run inference |
|
preds = model("한글과컴퓨터 한컴독스 기업용 ESD 1년 사용 (주)대성클라우드") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 6 | 11.8852 | 21 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0 | 3 | |
|
| 1 | 34 | |
|
| 2 | 33 | |
|
| 3 | 50 | |
|
| 4 | 50 | |
|
| 5 | 13 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (512, 512) |
|
- num_epochs: (20, 20) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 40 |
|
- body_learning_rate: (2e-05, 2e-05) |
|
- head_learning_rate: 2e-05 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:----:|:-------------:|:---------------:| |
|
| 0.0345 | 1 | 0.496 | - | |
|
| 1.7241 | 50 | 0.0031 | - | |
|
| 3.4483 | 100 | 0.0001 | - | |
|
| 5.1724 | 150 | 0.0 | - | |
|
| 6.8966 | 200 | 0.0 | - | |
|
| 8.6207 | 250 | 0.0 | - | |
|
| 10.3448 | 300 | 0.0 | - | |
|
| 12.0690 | 350 | 0.0 | - | |
|
| 13.7931 | 400 | 0.0 | - | |
|
| 15.5172 | 450 | 0.0 | - | |
|
| 17.2414 | 500 | 0.0 | - | |
|
| 18.9655 | 550 | 0.0 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.1.0.dev0 |
|
- Sentence Transformers: 3.1.1 |
|
- Transformers: 4.46.1 |
|
- PyTorch: 2.4.0+cu121 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.20.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |