File size: 10,143 Bytes
ed679b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 한글과컴퓨터 한컴오피스 2024 한글 Open 라이선스 [기업용/영구/2User이상] 한컴오피스 2024 (한글/한셀/한쇼) (주)유비소프트웨어
- text: 한글과컴퓨터 한글 2022 (기업용/패키지/USB방식) 아이코다(주)
- text: 한글과컴퓨터 한컴독스 기업용 ESD 1년 사용 (주)대성클라우드
- text: '[한글과컴퓨터] 한컴오피스 2022 [기업용/패키지/1년사용/제품키배송형] (주)컴퓨존'
- text: '[마이크로소프트코리아] MS Windows 7 Professional DSP 한글 64bit/정품라벨 (주)소프트존'
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 1.0
name: Metric
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 6 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | <ul><li>'정품 스토어 MS Windows 11 Home 한글 FPP 윈도우11 홈 설치USB 패키지 인증키 (주)에스비코어'</li><li>'윈도우11 프로 FPP(USB) 노트북 업그레이드 전용상품 주식회사 이좋은세상'</li><li>'[MS코리아정품] Windows 11 Pro FPP 한글 처음사용자용 영구 제품키 주식회사 레오솔루션'</li></ul> |
| 1 | <ul><li>'[Adobe] Photoshop for teams [기업용/라이선스/1년사용] [1개~9개 구매시(1개당 가격)] [발송 3~7일 소요] 갱신 (주)컴퓨존'</li><li>'Movavi Video Editor 2024 기업용 라이선스 / 모바비 주식회사 글래드소프트'</li><li>'Movavi Video Suite 2024 공공기관용 라이선스 / 모바비2024 메모리콕'</li></ul> |
| 2 | <ul><li>'안랩 V3 Net for Windows Server 9.0 DSP (1년) (주)위프로소프트'</li><li>'안랩 V3 Net for Windows Server 9.0 (기업용/DSP/1년) 아이코다(주)'</li><li>'안랩 V3 Net for Unix Server (기업용 1년사용) 아이코다(주)'</li></ul> |
| 3 | <ul><li>'[문자발송]한컴독스 개인용 1년(구독형 한컴오피스) / 윈도우 맥용 설치 파일 지원 주식회사 지엘스토어'</li><li>'한컴독스 개인용 1년 제품키배송형(구독형 한컴오피스) / 윈도우 맥용 설치 파일 지원 확인 주식회사 라이프큐브'</li><li>'[마이크로소프트] Office 2019 Home & Student PKC [가정용/패키지/한글] 택배 발송 오시리스랩 주식회사'</li></ul> |
| 5 | <ul><li>'[1분발송]리훈 오늘기억 일기장 다이어리 굿노트 아이패드 PDF 속지 3년 감사 1.오른손잡이용_1.3년다이어리 주식회사 리훈 (RIHOON CO., LTD.)'</li><li>'[스티커2종] 24년 오리지날 굿노트 디지털 속지 - 데일리 가로형(1D2P 형식) (아이패드 갤럭시탭 하이퍼링크 PDF 속지) (주)프랭클린 플래너 코리아'</li><li>'[1분발송]리훈 하고싶은말 일기장 다이어리 굿노트 아이패드 PDF 속지 날짜형(23년10월-24년12월)_오른손잡이용 주식회사 리훈 (RIHOON CO., LTD.)'</li></ul> |
| 0 | <ul><li>'Radmin 3 Standard license 기업용/ 영구(ESD) (주)삼경엠'</li><li>'Radmin 3 - 50 Licenses Pack 기업용 라이선스 /알어드민 / 원격지원 / 50대설치 메모리콕'</li><li>'Radmin 3 Standard 기업용 라이선스 /알어드민 / 원격지원 메모리콕'</li></ul> |
## Evaluation
### Metrics
| Label | Metric |
|:--------|:-------|
| **all** | 1.0 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_el12")
# Run inference
preds = model("한글과컴퓨터 한컴독스 기업용 ESD 1년 사용 (주)대성클라우드")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 6 | 11.8852 | 21 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 3 |
| 1 | 34 |
| 2 | 33 |
| 3 | 50 |
| 4 | 50 |
| 5 | 13 |
### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0345 | 1 | 0.496 | - |
| 1.7241 | 50 | 0.0031 | - |
| 3.4483 | 100 | 0.0001 | - |
| 5.1724 | 150 | 0.0 | - |
| 6.8966 | 200 | 0.0 | - |
| 8.6207 | 250 | 0.0 | - |
| 10.3448 | 300 | 0.0 | - |
| 12.0690 | 350 | 0.0 | - |
| 13.7931 | 400 | 0.0 | - |
| 15.5172 | 450 | 0.0 | - |
| 17.2414 | 500 | 0.0 | - |
| 18.9655 | 550 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |