File size: 10,111 Bytes
233a14a 24489ba 233a14a 24489ba 233a14a 24489ba 233a14a 24489ba 233a14a 24489ba 233a14a 24489ba 233a14a 6bfb454 233a14a 6bfb454 24489ba 6bfb454 24489ba 233a14a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 진주 선 마린 스프레이 180ml 펄 제이엠솔루션 청광 옵션없음 사구있오
- text: 핑크 레오파드 호피무늬 태닝비키니 바디프로필 몸매 - 표범 표범_M 세일러7
- text: 제이엠솔루션 180ml 스프레이 선 진주 마린 펄 청광 옵션없음 뿔샵
- text: 제주온 큐테라 풋귤 알로에베라 수딩젤 200ml × 1개 구대연구소
- text: BALIBODY SPF 6 카카오 태닝 오일 100ml x 5개 옵션없음 시연마켓
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.7882599580712788
name: Accuracy
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 7 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.0 | <ul><li>'디자이너스킨 올 액세스 태닝로션 여름 크림 옵션없음 라이브프롬잇'</li><li>'코스노리 올웨이즈 핏 바 비키니 코드 바디젤 263003 J 옵션없음 제이피샵온(JPshopon)'</li><li>'Bronzer Tanning Lotion by 디자이너스킨 400ml 옵션없음 라이브프롬잇'</li></ul> |
| 5.0 | <ul><li>'썬범 프리미엄 하이드레이팅 애프터 썬 젤 쿨다운 237ml - 썬 젤 쿨다운 237ml x 2개_없음 나대몰'</li><li>'Allurials 알로에 베라 젤 354ml 옵션없음 해외쇼핑 잘왔네'</li><li>'웰더마 지플러스 쿨링 에센스 알로에베라 수딩젤 120g × 3개 120g × 3개 하이블리스'</li></ul> |
| 1.0 | <ul><li>'SVR 선시큐어 울트라 라이트 인비저블 선 스프레이 SPF50 200ml 옵션없음 주식회사하늘'</li><li>'선스프레이 청광 진주 마린 제이엠솔루션 선 스프레이 펄 옵션없음 유토피아'</li><li>'청광 선 180ml 스프레이 제이엠솔루션 마린 진주 펄 옵션없음 포뿔샵'</li></ul> |
| 0.0 | <ul><li>'큐어 쿨링 선스틱 23g 2개 옵션없음 씨유니'</li><li>'라운드랩 자작나무 수분 선스틱 19g SPF 50+ 자작 수분 선스틱 19g 원스원컴퍼니'</li><li>'AHC 내추럴 퍼펙션 더블 쉴드 선스틱 (파랑)14g 골프 등산 워터프루프 썬크림 옵션없음 위얼드(WEALD)'</li></ul> |
| 4.0 | <ul><li>'엘로엘 2024 시즌8 팡팡 빅선쿠션 S8 스마일썬쿠션 본품 25g 옵션없음 더블아이'</li><li>'엘로엘 팡팡 빅 선쿠션 시즌 8 본품25g + 리필25g 옵션없음 미소샵'</li><li>'BRTC 마일드 선쿠션 본품+리필 기획 (디즈니) 옵션없음 지구상사'</li></ul> |
| 3.0 | <ul><li>'듀이셀 필터링크림 40ml (SPF50+) 옵션없음 오션컴퍼니'</li><li>'아쿠아선크림40ml+미니폼40ml / 24시간촉촉 비건 무기자차 SPF50+ PA++++ 옵션없음 에프엔지뷰티랩 주식회사'</li><li>'알리코제약 이나벨로 유기,무기자차 혼합자차 톤업 선크림 옵션없음 알리코제약(주)'</li></ul> |
| 2.0 | <ul><li>'리쥬란 바이옴 힐러 선케어 2종 세트(바이옴 힐러 선 크림 50mL SPF50+ + 바이옴 힐러 선 밤 19g SPF50+) 리쥬란 힐러'</li><li>'라로제 클린 선스틱 SPF50 18.5g+수분스틱 15ml 세트 라로제 코스메틱'</li><li>'[로우퀘스트] 베리어 인핸싱 선크림(SPF50+PA++++) + 에키네시아 선스틱(SPF50+PA++++) 2종 세트 로우퀘스트'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.7883 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bt7_test")
# Run inference
preds = model("제주온 큐테라 풋귤 알로에베라 수딩젤 200ml × 1개 구대연구소")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 4 | 10.1504 | 24 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 20 |
| 1.0 | 10 |
| 2.0 | 17 |
| 3.0 | 28 |
| 4.0 | 20 |
| 5.0 | 15 |
| 6.0 | 23 |
### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (50, 50)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 60
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0625 | 1 | 0.4924 | - |
| 3.125 | 50 | 0.291 | - |
| 6.25 | 100 | 0.0536 | - |
| 9.375 | 150 | 0.0011 | - |
| 12.5 | 200 | 0.0002 | - |
| 15.625 | 250 | 0.0001 | - |
| 18.75 | 300 | 0.0001 | - |
| 21.875 | 350 | 0.0001 | - |
| 25.0 | 400 | 0.0001 | - |
| 28.125 | 450 | 0.0001 | - |
| 31.25 | 500 | 0.0001 | - |
| 34.375 | 550 | 0.0001 | - |
| 37.5 | 600 | 0.0001 | - |
| 40.625 | 650 | 0.0001 | - |
| 43.75 | 700 | 0.0001 | - |
| 46.875 | 750 | 0.0001 | - |
| 50.0 | 800 | 0.0001 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |