File size: 10,111 Bytes
233a14a
 
 
 
 
 
 
 
 
 
 
 
24489ba
 
 
 
 
233a14a
 
 
 
 
 
 
 
 
 
 
 
 
24489ba
233a14a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24489ba
 
 
 
 
 
 
 
 
233a14a
 
 
 
 
 
24489ba
233a14a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24489ba
233a14a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24489ba
233a14a
 
6bfb454
233a14a
 
 
 
 
 
 
 
 
 
 
 
 
 
6bfb454
 
24489ba
 
 
 
 
6bfb454
 
 
 
 
24489ba
 
 
 
 
 
 
233a14a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 진주  마린 스프레이 180ml  제이엠솔루션 청광 옵션없음 사구있오
- text: 핑크 레오파드 호피무늬 태닝비키니 바디프로필 몸매 - 표범 표범_M 세일러7
- text: 제이엠솔루션 180ml 스프레이  진주 마린  청광 옵션없음 뿔샵
- text: 제주온 큐테라 풋귤 알로에베라 수딩젤 200ml × 1 구대연구소
- text: BALIBODY SPF 6 카카오 태닝 오일 100ml x 5 옵션없음 시연마켓
inference: true
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.7882599580712788
      name: Accuracy
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 7 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                  |
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.0   | <ul><li>'디자이너스킨 올 액세스 태닝로션 여름 크림 옵션없음 라이브프롬잇'</li><li>'코스노리 올웨이즈 핏 바 비키니 코드 바디젤 263003 J 옵션없음 제이피샵온(JPshopon)'</li><li>'Bronzer Tanning Lotion by 디자이너스킨 400ml 옵션없음 라이브프롬잇'</li></ul>                                                     |
| 5.0   | <ul><li>'썬범 프리미엄 하이드레이팅 애프터 썬 젤 쿨다운 237ml - 썬 젤 쿨다운 237ml x 2개_없음 나대몰'</li><li>'Allurials 알로에 베라 젤 354ml 옵션없음 해외쇼핑 잘왔네'</li><li>'웰더마 지플러스 쿨링 에센스 알로에베라 수딩젤 120g × 3개 120g × 3개 하이블리스'</li></ul>                                           |
| 1.0   | <ul><li>'SVR 선시큐어 울트라 라이트 인비저블 선 스프레이 SPF50 200ml 옵션없음 주식회사하늘'</li><li>'선스프레이 청광 진주 마린 제이엠솔루션 선 스프레이 펄 옵션없음 유토피아'</li><li>'청광 선 180ml 스프레이 제이엠솔루션 마린 진주 펄 옵션없음 포뿔샵'</li></ul>                                                             |
| 0.0   | <ul><li>'큐어 쿨링 선스틱 23g 2개 옵션없음 씨유니'</li><li>'라운드랩 자작나무 수분 선스틱 19g SPF 50+ 자작 수분 선스틱 19g 원스원컴퍼니'</li><li>'AHC 내추럴 퍼펙션 더블 쉴드 선스틱 (파랑)14g 골프 등산 워터프루프 썬크림 옵션없음 위얼드(WEALD)'</li></ul>                                                         |
| 4.0   | <ul><li>'엘로엘 2024 시즌8 팡팡 빅선쿠션 S8 스마일썬쿠션 본품 25g 옵션없음 더블아이'</li><li>'엘로엘 팡팡 빅 선쿠션 시즌 8 본품25g + 리필25g 옵션없음 미소샵'</li><li>'BRTC 마일드 선쿠션 본품+리필 기획 (디즈니) 옵션없음 지구상사'</li></ul>                                                                    |
| 3.0   | <ul><li>'듀이셀 필터링크림 40ml (SPF50+) 옵션없음 오션컴퍼니'</li><li>'아쿠아선크림40ml+미니폼40ml / 24시간촉촉 비건 무기자차 SPF50+ PA++++ 옵션없음 에프엔지뷰티랩 주식회사'</li><li>'알리코제약 이나벨로 유기,무기자차 혼합자차 톤업 선크림 옵션없음 알리코제약(주)'</li></ul>                                               |
| 2.0   | <ul><li>'리쥬란 바이옴 힐러 선케어 2종 세트(바이옴 힐러 선 크림 50mL SPF50+ + 바이옴 힐러 선 밤 19g SPF50+) 리쥬란 힐러'</li><li>'라로제 클린 선스틱 SPF50 18.5g+수분스틱 15ml 세트 라로제 코스메틱'</li><li>'[로우퀘스트] 베리어 인핸싱 선크림(SPF50+PA++++) + 에키네시아 선스틱(SPF50+PA++++) 2종 세트 로우퀘스트'</li></ul> |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.7883   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bt7_test")
# Run inference
preds = model("제주온 큐테라 풋귤 알로에베라 수딩젤 200ml × 1개 구대연구소")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 4   | 10.1504 | 24  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0.0   | 20                    |
| 1.0   | 10                    |
| 2.0   | 17                    |
| 3.0   | 28                    |
| 4.0   | 20                    |
| 5.0   | 15                    |
| 6.0   | 23                    |

### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (50, 50)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 60
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch  | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0625 | 1    | 0.4924        | -               |
| 3.125  | 50   | 0.291         | -               |
| 6.25   | 100  | 0.0536        | -               |
| 9.375  | 150  | 0.0011        | -               |
| 12.5   | 200  | 0.0002        | -               |
| 15.625 | 250  | 0.0001        | -               |
| 18.75  | 300  | 0.0001        | -               |
| 21.875 | 350  | 0.0001        | -               |
| 25.0   | 400  | 0.0001        | -               |
| 28.125 | 450  | 0.0001        | -               |
| 31.25  | 500  | 0.0001        | -               |
| 34.375 | 550  | 0.0001        | -               |
| 37.5   | 600  | 0.0001        | -               |
| 40.625 | 650  | 0.0001        | -               |
| 43.75  | 700  | 0.0001        | -               |
| 46.875 | 750  | 0.0001        | -               |
| 50.0   | 800  | 0.0001        | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->