mini1013 commited on
Commit
233a14a
·
verified ·
1 Parent(s): bc972b2

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 바나나보트 태닝 드라이 오일 선스프레이 선스크린 SPF15 170g 코코넛 오일 옵션없음 아프로
14
+ - text: 바나나보트 딥 태닝 스프레이 오일 SPF4 236ml Deep Tanning Spray 옵션없음 제이프로젝트
15
+ - text: PGA 워터 선스프레이 80ml 워터프루프 골프 물놀이용 뿌리는 선크림 옵션없음 그레이스환
16
+ - text: 알롱 컨디셔닝 알로에젤 알로에 수딩젤 500ml 컨디셔닝 수딩젤 500ml 메리앤
17
+ - text: '[해외] Devoted Creations 블랙 옵세션 블랙 브론저 13.5온스 (212588) 옵션없음 올 스토어'
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: accuracy
31
+ value: 0.7966457023060797
32
+ name: Accuracy
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 7 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 6.0 | <ul><li>'태닝오일 150ml 코코넛오일 모든순간 구릿빛피부 2WBF81AD8 옵션없음 씨티몰'</li><li>'Bronzer Tanning Lotion by 디자이너스킨 400ml 옵션없음 라이브프롬잇'</li><li>'New Sunshine Australian Gold 브론즈 가속기 241g(8.5온스) 옵션없음 비포유'</li></ul> |
66
+ | 5.0 | <ul><li>'라이크듀 90%알로에베라 듀 수딩젤 겔, 250ml, 1개 250ml × 1개 하이블리스'</li><li>'라디발 어린이 애프터선 로션 200ml 옵션없음 Held Farm e.K.'</li><li>'쿨 다운 알로에베라 젤 비건 After Sun 케어 코코아 버터 to Soothe & Hydrate Sun Bum 미국직구 여름휴가 자외선차단 선케어 227g 1개 옵션없음 자대'</li></ul> |
67
+ | 1.0 | <ul><li>'SVR 선시큐어 SPF50 포켓 스프레이 20ml 옵션없음 주식회사하늘'</li><li>'베이비가닉스 선스프레이 SPF50 177ml x 2개 옵션없음 유어 페이버릿'</li><li>'선스프레이 청광 진주 마린 제이엠솔루션 선 스프레이 펄 옵션없음 유토피아'</li></ul> |
68
+ | 0.0 | <ul><li>'가히 에어리핏 런닝맨 썬스틱 14g 1+1 옵션없음 ㈜코리아테크'</li><li>'[글루타넥스][이주연PICK] UV 글로우밤 (11g) 1+1 (11g+11g) 넥서스파마 주식회사'</li><li>'AHC 마스터즈 에어리치 선스틱 10g 1개 (SPF50+/PA++++) J4W_03)선스틱 10g 1개 (주)카버코리아'</li></ul> |
69
+ | 4.0 | <ul><li>'최대 49% / 달바 비건 톤업 선쿠션 15gX2개 [단품] 톤업 선쿠션 15g(1개) 주식회사 달바글로벌'</li><li>'지엘리 백탁 뭉침 없는 온가족 올투게더 쿨링 선쿠션 지엘리 선쿠션 본품 81%할인 주식회사 브랜더스윈'</li><li>'라운드랩 자작나무 수분 선쿠션 15g(SPF50+) 옵션없음 쑤기쓰마켓'</li></ul> |
70
+ | 3.0 | <ul><li>'파이진 피에스아이 선 블록 옵션없음 비코빅(VIKOBIG)'</li><li>'[당일출고] 셀퓨전씨 레이저 UV 썬스크린 50ml(신형, SPF50+) 옵션없음 제이에이치컴퍼니'</li><li>'비욘드 피토 아쿠아 트루 워터 선 베이스 80ml 옵션없음 에이티씨무역'</li></ul> |
71
+ | 2.0 | <ul><li>'셀이야 피부보호 선케어 2종세트 (무기자차 선크림+다크닝없는 블링커버 비비BB)'</li><li>'라로제 썸머 3종 클린 선스틱 SPF 50 + 선크림 SPF 50+ + 멀티오일 세트'</li><li>'[선케어SET]온그리디언츠 선케어 2종 세트(톤업선로션+선스틱)'</li></ul> |
72
+
73
+ ## Evaluation
74
+
75
+ ### Metrics
76
+ | Label | Accuracy |
77
+ |:--------|:---------|
78
+ | **all** | 0.7966 |
79
+
80
+ ## Uses
81
+
82
+ ### Direct Use for Inference
83
+
84
+ First install the SetFit library:
85
+
86
+ ```bash
87
+ pip install setfit
88
+ ```
89
+
90
+ Then you can load this model and run inference.
91
+
92
+ ```python
93
+ from setfit import SetFitModel
94
+
95
+ # Download from the 🤗 Hub
96
+ model = SetFitModel.from_pretrained("mini1013/master_cate_bt7_test")
97
+ # Run inference
98
+ preds = model("알롱 컨디셔닝 알로에젤 알로에 수딩젤 500ml 컨디셔닝 수딩젤 500ml 메리앤")
99
+ ```
100
+
101
+ <!--
102
+ ### Downstream Use
103
+
104
+ *List how someone could finetune this model on their own dataset.*
105
+ -->
106
+
107
+ <!--
108
+ ### Out-of-Scope Use
109
+
110
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
111
+ -->
112
+
113
+ <!--
114
+ ## Bias, Risks and Limitations
115
+
116
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
117
+ -->
118
+
119
+ <!--
120
+ ### Recommendations
121
+
122
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
123
+ -->
124
+
125
+ ## Training Details
126
+
127
+ ### Training Set Metrics
128
+ | Training set | Min | Median | Max |
129
+ |:-------------|:----|:--------|:----|
130
+ | Word count | 4 | 10.1504 | 24 |
131
+
132
+ | Label | Training Sample Count |
133
+ |:------|:----------------------|
134
+ | 0.0 | 20 |
135
+ | 1.0 | 10 |
136
+ | 2.0 | 17 |
137
+ | 3.0 | 28 |
138
+ | 4.0 | 20 |
139
+ | 5.0 | 15 |
140
+ | 6.0 | 23 |
141
+
142
+ ### Training Hyperparameters
143
+ - batch_size: (512, 512)
144
+ - num_epochs: (40, 40)
145
+ - max_steps: -1
146
+ - sampling_strategy: oversampling
147
+ - num_iterations: 50
148
+ - body_learning_rate: (2e-05, 1e-05)
149
+ - head_learning_rate: 0.01
150
+ - loss: CosineSimilarityLoss
151
+ - distance_metric: cosine_distance
152
+ - margin: 0.25
153
+ - end_to_end: False
154
+ - use_amp: False
155
+ - warmup_proportion: 0.1
156
+ - l2_weight: 0.01
157
+ - seed: 42
158
+ - eval_max_steps: -1
159
+ - load_best_model_at_end: False
160
+
161
+ ### Training Results
162
+ | Epoch | Step | Training Loss | Validation Loss |
163
+ |:-------:|:----:|:-------------:|:---------------:|
164
+ | 0.0769 | 1 | 0.4951 | - |
165
+ | 3.8462 | 50 | 0.2316 | - |
166
+ | 7.6923 | 100 | 0.0262 | - |
167
+ | 11.5385 | 150 | 0.0136 | - |
168
+ | 15.3846 | 200 | 0.0047 | - |
169
+ | 19.2308 | 250 | 0.0001 | - |
170
+ | 23.0769 | 300 | 0.0001 | - |
171
+ | 26.9231 | 350 | 0.0001 | - |
172
+ | 30.7692 | 400 | 0.0001 | - |
173
+ | 34.6154 | 450 | 0.0 | - |
174
+ | 38.4615 | 500 | 0.0 | - |
175
+
176
+ ### Framework Versions
177
+ - Python: 3.10.12
178
+ - SetFit: 1.1.0
179
+ - Sentence Transformers: 3.3.1
180
+ - Transformers: 4.44.2
181
+ - PyTorch: 2.2.0a0+81ea7a4
182
+ - Datasets: 3.2.0
183
+ - Tokenizers: 0.19.1
184
+
185
+ ## Citation
186
+
187
+ ### BibTeX
188
+ ```bibtex
189
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
190
+ doi = {10.48550/ARXIV.2209.11055},
191
+ url = {https://arxiv.org/abs/2209.11055},
192
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
193
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
194
+ title = {Efficient Few-Shot Learning Without Prompts},
195
+ publisher = {arXiv},
196
+ year = {2022},
197
+ copyright = {Creative Commons Attribution 4.0 International}
198
+ }
199
+ ```
200
+
201
+ <!--
202
+ ## Glossary
203
+
204
+ *Clearly define terms in order to be accessible across audiences.*
205
+ -->
206
+
207
+ <!--
208
+ ## Model Card Authors
209
+
210
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
211
+ -->
212
+
213
+ <!--
214
+ ## Model Card Contact
215
+
216
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
217
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_bt_test",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.2.0a0+81ea7a4"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f13e8c4f781d094de56f9ac45dd5bc7253cf65c72c81cdbff4c92f280935668
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63e5f95ae88c27bb5adf6915d62f882b6812f7d618f27e5abb88db6ce55b38e8
3
+ size 43935
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff