metadata
base_model: mini1013/master_domain
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: >-
루나 롱래스팅 팁 컨실러 6.5/7.5g (SPF34 PA++) [챔피언십 에디션] [챔피언십] 팁 컨실러 0.7호+듀얼 컨실러
애경산업 (주) 청양공장
- text: 올리브영프라이머 VDL 컬러 코렉팅 프라이머 30ml 로즈쿼츠 오늘의 몰
- text: 미니 튜브형 케이스 로션케이스 가정생활용품 50ml 셀러팩토리
- text: 이자녹스 듀얼 커버 쿠션 15ml(SPF50+) 본품 23호 동의함 구일브라더스
- text: 에스티로더 더블웨어 플로리스 하이드레이팅 프라이머 SPF45/PA++++ (30ml) 옵션없음 마이소브
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.7306034482758621
name: Accuracy
SetFit with mini1013/master_domain
This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: mini1013/master_domain
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 7 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
0.0 |
|
3.0 |
|
1.0 |
|
5.0 |
|
4.0 |
|
6.0 |
|
2.0 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.7306 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bt4_test")
# Run inference
preds = model("미니 튜브형 케이스 로션케이스 가정생활용품 50ml 셀러팩토리")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 5 | 9.7872 | 19 |
Label | Training Sample Count |
---|---|
0.0 | 19 |
1.0 | 21 |
2.0 | 10 |
3.0 | 19 |
4.0 | 28 |
5.0 | 23 |
6.0 | 21 |
Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 60
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0588 | 1 | 0.4976 | - |
2.9412 | 50 | 0.2385 | - |
5.8824 | 100 | 0.006 | - |
8.8235 | 150 | 0.0002 | - |
11.7647 | 200 | 0.0001 | - |
14.7059 | 250 | 0.0001 | - |
17.6471 | 300 | 0.0001 | - |
20.5882 | 350 | 0.0001 | - |
23.5294 | 400 | 0.0001 | - |
26.4706 | 450 | 0.0001 | - |
29.4118 | 500 | 0.0001 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}