|
--- |
|
license: cc-by-nc-4.0 |
|
base_model: MCG-NJU/videomae-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: videomae-base-finetuned-bleeding-exp_0 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# videomae-base-finetuned-bleeding-exp_0 |
|
|
|
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.4958 |
|
- Accuracy: 0.5 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- training_steps: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| No log | 0.04 | 2 | 0.6967 | 0.5 | |
|
| No log | 1.04 | 4 | 0.6799 | 0.75 | |
|
| No log | 2.04 | 6 | 0.6721 | 0.75 | |
|
| No log | 3.04 | 8 | 0.6742 | 0.75 | |
|
| 0.6424 | 4.04 | 10 | 0.6927 | 0.25 | |
|
| 0.6424 | 5.04 | 12 | 0.7295 | 0.5 | |
|
| 0.6424 | 6.04 | 14 | 0.8047 | 0.5 | |
|
| 0.6424 | 7.04 | 16 | 0.8589 | 0.5 | |
|
| 0.6424 | 8.04 | 18 | 0.8842 | 0.5 | |
|
| 0.6123 | 9.04 | 20 | 0.9349 | 0.5 | |
|
| 0.6123 | 10.04 | 22 | 0.9543 | 0.5 | |
|
| 0.6123 | 11.04 | 24 | 0.9924 | 0.5 | |
|
| 0.6123 | 12.04 | 26 | 1.0729 | 0.5 | |
|
| 0.6123 | 13.04 | 28 | 1.2268 | 0.5 | |
|
| 0.3641 | 14.04 | 30 | 1.3759 | 0.5 | |
|
| 0.3641 | 15.04 | 32 | 1.4344 | 0.5 | |
|
| 0.3641 | 16.04 | 34 | 1.4563 | 0.5 | |
|
| 0.3641 | 17.04 | 36 | 1.4365 | 0.5 | |
|
| 0.3641 | 18.04 | 38 | 1.4343 | 0.5 | |
|
| 0.4378 | 19.04 | 40 | 1.4375 | 0.5 | |
|
| 0.4378 | 20.04 | 42 | 1.4530 | 0.5 | |
|
| 0.4378 | 21.04 | 44 | 1.4732 | 0.5 | |
|
| 0.4378 | 22.04 | 46 | 1.4877 | 0.5 | |
|
| 0.4378 | 23.04 | 48 | 1.4919 | 0.5 | |
|
| 0.222 | 24.04 | 50 | 1.4958 | 0.5 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.2 |
|
- Pytorch 1.12.0 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|