File size: 2,930 Bytes
a1dcce3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned-bleeding-exp_0
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# videomae-base-finetuned-bleeding-exp_0

This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4958
- Accuracy: 0.5

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 0.04  | 2    | 0.6967          | 0.5      |
| No log        | 1.04  | 4    | 0.6799          | 0.75     |
| No log        | 2.04  | 6    | 0.6721          | 0.75     |
| No log        | 3.04  | 8    | 0.6742          | 0.75     |
| 0.6424        | 4.04  | 10   | 0.6927          | 0.25     |
| 0.6424        | 5.04  | 12   | 0.7295          | 0.5      |
| 0.6424        | 6.04  | 14   | 0.8047          | 0.5      |
| 0.6424        | 7.04  | 16   | 0.8589          | 0.5      |
| 0.6424        | 8.04  | 18   | 0.8842          | 0.5      |
| 0.6123        | 9.04  | 20   | 0.9349          | 0.5      |
| 0.6123        | 10.04 | 22   | 0.9543          | 0.5      |
| 0.6123        | 11.04 | 24   | 0.9924          | 0.5      |
| 0.6123        | 12.04 | 26   | 1.0729          | 0.5      |
| 0.6123        | 13.04 | 28   | 1.2268          | 0.5      |
| 0.3641        | 14.04 | 30   | 1.3759          | 0.5      |
| 0.3641        | 15.04 | 32   | 1.4344          | 0.5      |
| 0.3641        | 16.04 | 34   | 1.4563          | 0.5      |
| 0.3641        | 17.04 | 36   | 1.4365          | 0.5      |
| 0.3641        | 18.04 | 38   | 1.4343          | 0.5      |
| 0.4378        | 19.04 | 40   | 1.4375          | 0.5      |
| 0.4378        | 20.04 | 42   | 1.4530          | 0.5      |
| 0.4378        | 21.04 | 44   | 1.4732          | 0.5      |
| 0.4378        | 22.04 | 46   | 1.4877          | 0.5      |
| 0.4378        | 23.04 | 48   | 1.4919          | 0.5      |
| 0.222         | 24.04 | 50   | 1.4958          | 0.5      |


### Framework versions

- Transformers 4.40.2
- Pytorch 1.12.0
- Datasets 2.19.1
- Tokenizers 0.19.1