|
--- |
|
license: cc-by-4.0 |
|
datasets: |
|
- mauro-nievoff/MultiCaRe_Dataset |
|
language: |
|
- en |
|
pipeline_tag: image-classification |
|
tags: |
|
- medical |
|
--- |
|
# MultiCaReClassifier for Medical Image Classification |
|
|
|
The **MultiCaReClassifier** is a model ensemble used for multilabel medical image classification. It includes classes such as: |
|
- image_type: 'radiology', 'pathology', 'endoscopy', 'ophthalmic_imaging', 'medical_photograph', 'electrography', 'chart'. |
|
- image_subtype: 'ultrasound', 'x_ray', 'ct', 'mri', 'h&e', 'immunostaining', 'fundus_photograph', 'ekg', 'eeg', etc. |
|
- radiology_region: 'thorax', 'head', 'abdomen', 'upper_limb', 'lower_limb', etc. |
|
- radiology_view: 'frontal', 'sagittal', 'axial', 'oblique', etc. |
|
|
|
|
|
1. Clone this repo: |
|
``` |
|
!git clone https://huggingface.co/mauro-nievoff/MultiCaReClassifier |
|
``` |
|
|
|
2. Change the directory: |
|
``` |
|
%cd /content/MultiCaReClassifier |
|
``` |
|
|
|
3. Import the MultiCaReClassifier class: |
|
``` |
|
from MultiCaReClassifier.pipeline import * |
|
``` |
|
|
|
4. Get the predictions for a given image folder: |
|
``` |
|
predictions = MultiCaReClassifier(image_folder = '/content/img') |
|
predictions.data.head() |
|
``` |
|
|
|
|
|
- **Model Training by:** Facundo Roffet |
|
- **Data Curation and Postprocessing by:** Mauro Nievas Offidani |