File size: 1,220 Bytes
b3dee33 40f9cd6 f4b6ef0 40f9cd6 00b738b f4b6ef0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
---
license: cc-by-4.0
datasets:
- mauro-nievoff/MultiCaRe_Dataset
language:
- en
pipeline_tag: image-classification
tags:
- medical
---
# MultiCaReClassifier for Medical Image Classification
The **MultiCaReClassifier** is a model ensemble used for multilabel medical image classification. It includes classes such as:
- image_type: 'radiology', 'pathology', 'endoscopy', 'ophthalmic_imaging', 'medical_photograph', 'electrography', 'chart'.
- image_subtype: 'ultrasound', 'x_ray', 'ct', 'mri', 'h&e', 'immunostaining', 'fundus_photograph', 'ekg', 'eeg', etc.
- radiology_region: 'thorax', 'head', 'abdomen', 'upper_limb', 'lower_limb', etc.
- radiology_view: 'frontal', 'sagittal', 'axial', 'oblique', etc.
1. Clone this repo:
```
!git clone https://huggingface.co/mauro-nievoff/MultiCaReClassifier
```
2. Change the directory:
```
%cd /content/MultiCaReClassifier
```
3. Import the MultiCaReClassifier class:
```
from MultiCaReClassifier.pipeline import *
```
4. Get the predictions for a given image folder:
```
predictions = MultiCaReClassifier(image_folder = '/content/img')
predictions.data.head()
```
- **Model Training by:** Facundo Roffet
- **Data Curation and Postprocessing by:** Mauro Nievas Offidani |