livinNector's picture
End of training
ae899ff verified
metadata
library_name: transformers
license: mit
base_model: microsoft/Multilingual-MiniLM-L12-H384
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: m-minilm-l12-h384-data-augumented-dra-tam-mal-aw-classification-finetune
    results: []

m-minilm-l12-h384-data-augumented-dra-tam-mal-aw-classification-finetune

This model is a fine-tuned version of microsoft/Multilingual-MiniLM-L12-H384 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6411
  • Accuracy: 0.7702
  • F1: 0.8164

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.6713 0.2222 20 0.6683 0.5998 0.7499
0.6494 0.4444 40 0.6559 0.6019 0.6459
0.6431 0.6667 60 0.6389 0.6508 0.7346
0.6079 0.8889 80 0.6318 0.6720 0.7166
0.5667 1.1111 100 0.5755 0.7021 0.7401
0.5353 1.3333 120 0.5437 0.7213 0.7927
0.5345 1.5556 140 0.5306 0.7482 0.7964
0.5178 1.7778 160 0.5366 0.7184 0.8031
0.4952 2.0 180 0.5046 0.7543 0.8050
0.4183 2.2222 200 0.5798 0.7278 0.7466
0.4257 2.4444 220 0.5373 0.7673 0.8075
0.3932 2.6667 240 0.5214 0.7665 0.8093
0.3914 2.8889 260 0.5125 0.7616 0.8133
0.3447 3.1111 280 0.5534 0.7653 0.8076
0.3122 3.3333 300 0.5874 0.7543 0.7901
0.3116 3.5556 320 0.5594 0.7649 0.8003
0.326 3.7778 340 0.5446 0.7661 0.8158
0.2979 4.0 360 0.5750 0.7681 0.8145
0.2457 4.2222 380 0.6121 0.7677 0.8140
0.2383 4.4444 400 0.5861 0.7689 0.8118
0.2396 4.6667 420 0.6161 0.7734 0.8156
0.2311 4.8889 440 0.5909 0.7751 0.8121
0.2139 5.1111 460 0.6411 0.7702 0.8164
0.2038 5.3333 480 0.6462 0.7718 0.8154
0.1884 5.5556 500 0.6443 0.7645 0.8043
0.1889 5.7778 520 0.6588 0.7665 0.8064
0.2081 6.0 540 0.6581 0.7665 0.8054

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3