End of training
Browse files- README.md +89 -0
- config.json +27 -0
- default/head_config.json +19 -0
- default/pytorch_model_head.bin +3 -0
- model.safetensors +3 -0
- tam_mal_ai_aw_classification_adapter/adapter_config.json +26 -0
- tam_mal_ai_aw_classification_adapter/pytorch_adapter.bin +3 -0
- tam_mal_ai_aw_classification_head/head_config.json +21 -0
- tam_mal_ai_aw_classification_head/pytorch_model_head.bin +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: microsoft/Multilingual-MiniLM-L12-H384
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: m-minilm-l12-h384-data-augumented-dra-tam-mal-aw-classification-finetune
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# m-minilm-l12-h384-data-augumented-dra-tam-mal-aw-classification-finetune
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [microsoft/Multilingual-MiniLM-L12-H384](https://huggingface.co/microsoft/Multilingual-MiniLM-L12-H384) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.6411
|
23 |
+
- Accuracy: 0.7702
|
24 |
+
- F1: 0.8164
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 0.0001
|
44 |
+
- train_batch_size: 128
|
45 |
+
- eval_batch_size: 128
|
46 |
+
- seed: 42
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- num_epochs: 6
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
54 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|
|
55 |
+
| 0.6713 | 0.2222 | 20 | 0.6683 | 0.5998 | 0.7499 |
|
56 |
+
| 0.6494 | 0.4444 | 40 | 0.6559 | 0.6019 | 0.6459 |
|
57 |
+
| 0.6431 | 0.6667 | 60 | 0.6389 | 0.6508 | 0.7346 |
|
58 |
+
| 0.6079 | 0.8889 | 80 | 0.6318 | 0.6720 | 0.7166 |
|
59 |
+
| 0.5667 | 1.1111 | 100 | 0.5755 | 0.7021 | 0.7401 |
|
60 |
+
| 0.5353 | 1.3333 | 120 | 0.5437 | 0.7213 | 0.7927 |
|
61 |
+
| 0.5345 | 1.5556 | 140 | 0.5306 | 0.7482 | 0.7964 |
|
62 |
+
| 0.5178 | 1.7778 | 160 | 0.5366 | 0.7184 | 0.8031 |
|
63 |
+
| 0.4952 | 2.0 | 180 | 0.5046 | 0.7543 | 0.8050 |
|
64 |
+
| 0.4183 | 2.2222 | 200 | 0.5798 | 0.7278 | 0.7466 |
|
65 |
+
| 0.4257 | 2.4444 | 220 | 0.5373 | 0.7673 | 0.8075 |
|
66 |
+
| 0.3932 | 2.6667 | 240 | 0.5214 | 0.7665 | 0.8093 |
|
67 |
+
| 0.3914 | 2.8889 | 260 | 0.5125 | 0.7616 | 0.8133 |
|
68 |
+
| 0.3447 | 3.1111 | 280 | 0.5534 | 0.7653 | 0.8076 |
|
69 |
+
| 0.3122 | 3.3333 | 300 | 0.5874 | 0.7543 | 0.7901 |
|
70 |
+
| 0.3116 | 3.5556 | 320 | 0.5594 | 0.7649 | 0.8003 |
|
71 |
+
| 0.326 | 3.7778 | 340 | 0.5446 | 0.7661 | 0.8158 |
|
72 |
+
| 0.2979 | 4.0 | 360 | 0.5750 | 0.7681 | 0.8145 |
|
73 |
+
| 0.2457 | 4.2222 | 380 | 0.6121 | 0.7677 | 0.8140 |
|
74 |
+
| 0.2383 | 4.4444 | 400 | 0.5861 | 0.7689 | 0.8118 |
|
75 |
+
| 0.2396 | 4.6667 | 420 | 0.6161 | 0.7734 | 0.8156 |
|
76 |
+
| 0.2311 | 4.8889 | 440 | 0.5909 | 0.7751 | 0.8121 |
|
77 |
+
| 0.2139 | 5.1111 | 460 | 0.6411 | 0.7702 | 0.8164 |
|
78 |
+
| 0.2038 | 5.3333 | 480 | 0.6462 | 0.7718 | 0.8154 |
|
79 |
+
| 0.1884 | 5.5556 | 500 | 0.6443 | 0.7645 | 0.8043 |
|
80 |
+
| 0.1889 | 5.7778 | 520 | 0.6588 | 0.7665 | 0.8064 |
|
81 |
+
| 0.2081 | 6.0 | 540 | 0.6581 | 0.7665 | 0.8054 |
|
82 |
+
|
83 |
+
|
84 |
+
### Framework versions
|
85 |
+
|
86 |
+
- Transformers 4.45.2
|
87 |
+
- Pytorch 2.5.1+cu121
|
88 |
+
- Datasets 3.2.0
|
89 |
+
- Tokenizers 0.20.3
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/Multilingual-MiniLM-L12-H384",
|
3 |
+
"architectures": [
|
4 |
+
"BertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 384,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 1536,
|
13 |
+
"layer_norm_eps": 1e-12,
|
14 |
+
"max_position_embeddings": 512,
|
15 |
+
"model_type": "bert",
|
16 |
+
"num_attention_heads": 12,
|
17 |
+
"num_hidden_layers": 12,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"position_embedding_type": "absolute",
|
20 |
+
"problem_type": "single_label_classification",
|
21 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.45.2",
|
24 |
+
"type_vocab_size": 2,
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 250037
|
27 |
+
}
|
default/head_config.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"config": {
|
3 |
+
"activation_function": "gelu",
|
4 |
+
"bias": true,
|
5 |
+
"embedding_size": 768,
|
6 |
+
"head_type": "masked_lm",
|
7 |
+
"label2id": null,
|
8 |
+
"layer_norm": true,
|
9 |
+
"layers": 2,
|
10 |
+
"shift_labels": false,
|
11 |
+
"vocab_size": 250000
|
12 |
+
},
|
13 |
+
"hidden_size": 768,
|
14 |
+
"model_class": "BertAdapterModel",
|
15 |
+
"model_name": "ai4bharat/IndicBERTv2-MLM-only",
|
16 |
+
"model_type": "bert",
|
17 |
+
"name": "default",
|
18 |
+
"version": "adapters.1.0.1"
|
19 |
+
}
|
default/pytorch_model_head.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81ade58fc9df9dbd31f6b4dfb0ec3bcafffbd5f20b8f19438fbadbddf6688352
|
3 |
+
size 771371254
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a6a794d71ca6987b3aa2eb0fdec40bcef5f06a41eefc3f2010930ea9b7556022
|
3 |
+
size 470641664
|
tam_mal_ai_aw_classification_adapter/adapter_config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"config": {
|
3 |
+
"alpha": 8,
|
4 |
+
"architecture": "lora",
|
5 |
+
"attn_matrices": [
|
6 |
+
"q",
|
7 |
+
"v"
|
8 |
+
],
|
9 |
+
"composition_mode": "add",
|
10 |
+
"dropout": 0.1,
|
11 |
+
"init_weights": "lora",
|
12 |
+
"intermediate_lora": false,
|
13 |
+
"leave_out": [],
|
14 |
+
"output_lora": false,
|
15 |
+
"r": 12,
|
16 |
+
"selfattn_lora": true,
|
17 |
+
"use_gating": false
|
18 |
+
},
|
19 |
+
"config_id": "a0c8452a4cfb970e",
|
20 |
+
"hidden_size": 768,
|
21 |
+
"model_class": "BertAdapterModel",
|
22 |
+
"model_name": "ai4bharat/IndicBERTv2-MLM-only",
|
23 |
+
"model_type": "bert",
|
24 |
+
"name": "tam_mal_ai_aw_classification_adapter",
|
25 |
+
"version": "adapters.1.0.1"
|
26 |
+
}
|
tam_mal_ai_aw_classification_adapter/pytorch_adapter.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b924cc8d8ea3bb7be73459cf3bc217f1dda9e5607a9be79faa037f4ca483f54
|
3 |
+
size 1788390
|
tam_mal_ai_aw_classification_head/head_config.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"config": {
|
3 |
+
"activation_function": "ReLU",
|
4 |
+
"bias": true,
|
5 |
+
"dropout_prob": null,
|
6 |
+
"head_type": "classification",
|
7 |
+
"label2id": {
|
8 |
+
"Abusive": 1,
|
9 |
+
"Non-Abusive": 0
|
10 |
+
},
|
11 |
+
"layers": 2,
|
12 |
+
"num_labels": 2,
|
13 |
+
"use_pooler": false
|
14 |
+
},
|
15 |
+
"hidden_size": 768,
|
16 |
+
"model_class": "BertAdapterModel",
|
17 |
+
"model_name": "ai4bharat/IndicBERTv2-MLM-only",
|
18 |
+
"model_type": "bert",
|
19 |
+
"name": "tam_mal_ai_aw_classification_head",
|
20 |
+
"version": "adapters.1.0.1"
|
21 |
+
}
|
tam_mal_ai_aw_classification_head/pytorch_model_head.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e7d8c1397bae7f2d2c0043913999e01f2c1a6cf0c1f88a37c663f5ab7f3ae94
|
3 |
+
size 2370792
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:94c38db30681f6d72f206d289bb9adf2bbabcf01b017565da663fe1deaa5e7ee
|
3 |
+
size 5368
|