metadata
library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- Spanish_english
metrics:
- wer
model-index:
- name: Whisper tiny Russian (Trained with Spanish accent)
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Spanish English
type: Spanish_english
args: 'config: default, split: test'
metrics:
- name: Wer
type: wer
value: 16.29353233830846
Whisper tiny Russian (Trained with Spanish accent)
This model is a fine-tuned version of openai/whisper-tiny on the Spanish English dataset. It achieves the following results on the evaluation set:
- Loss: 0.2750
- Wer: 16.2935
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1500
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.4622 | 0.4864 | 500 | 0.3288 | 17.9851 |
0.2832 | 0.9728 | 1000 | 0.2934 | 17.0896 |
0.1902 | 1.4591 | 1500 | 0.2750 | 16.2935 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1