--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-tiny tags: - hf-asr-leaderboard - generated_from_trainer datasets: - Spanish_english metrics: - wer model-index: - name: Whisper tiny Russian (Trained with Spanish accent) results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Spanish English type: Spanish_english args: 'config: default, split: test' metrics: - name: Wer type: wer value: 16.29353233830846 --- # Whisper tiny Russian (Trained with Spanish accent) This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Spanish English dataset. It achieves the following results on the evaluation set: - Loss: 0.2750 - Wer: 16.2935 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.4622 | 0.4864 | 500 | 0.3288 | 17.9851 | | 0.2832 | 0.9728 | 1000 | 0.2934 | 17.0896 | | 0.1902 | 1.4591 | 1500 | 0.2750 | 16.2935 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1