File size: 3,350 Bytes
aaed434 80343c6 aaed434 80343c6 cdb4bde 80343c6 cdb4bde aaed434 1682c3d a81791d 80343c6 aaed434 cdb4bde aaed434 80343c6 cdb4bde 80343c6 f9f05e9 80343c6 205034a 80343c6 cdb4bde 205034a 80343c6 205034a 80343c6 205034a 883f31c 205034a 80343c6 205034a 80343c6 bba0373 4482233 a610b5d 80343c6 cdb4bde 8114ac7 3891ea9 80343c6 81ba544 80343c6 8a5a6c0 80343c6 c870213 80343c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
base_model: unsloth/Meta-Llama-3.1-8B
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
- ur
---
# Model Card for Alif 1.0 8B Instruct
**Alif 1.0 8B Instruct** is an open-source model with highly advanced multilingual reasoning capabilities. It utilizes human refined multilingual synthetic data paired with reasoning to enhance cultural nuance and reasoning capabilities in english and urdu languages.
- **Developed by:** large-traversaal
- **License:** apache-2.0
- **Base model:** unsloth/Meta-Llama-3.1-8B
- **Model:** Alif-1.0-8B-Instruct
- **Model Size:** 8 billion parameters
This model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
### How to Use Alif 1.0 8B Instruct
Install the transformers, bitsandbytes libraries and load Alif 1.0 8B Instruct as follows:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
from transformers import BitsAndBytesConfig
model_id = "large-traversaal/Alif-1.0-8B-Instruct"
# 4-bit quantization configuration
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
# Load tokenizer and model in 4-bit
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
quantization_config=quantization_config,
device_map="auto"
)
# Create text generation pipeline
chatbot = pipeline("text-generation", model=model, tokenizer=tokenizer, device_map="auto")
# Function to chat
def chat(message):
response = chatbot(message, max_new_tokens=100, do_sample=True, temperature=0.3)
return response[0]["generated_text"]
# Example chat
user_input = "شہر کراچی کی کیا اہمیت ہے؟"
bot_response = chat(user_input)
print(bot_response)
```
You can also try out this model using [TextStreamer](https://colab.research.google.com/drive/1mEPynC__uN2tKDvDho3f6MpcKW-GMiAh?usp=sharing) or [Gradio](https://colab.research.google.com/drive/1DUwlYBOMUd7FZaI631-y6y8fTNiy0pqt?usp=sharing) in Colab. It is also available in GGUF with various quantized formats for Ollama, LM Studio, Jan, and Llama.cpp.
## Model Details
**Input**: Models input text only.
**Output**: Models generate text only.
**Model Architecture**: Alif 1.0 8B Instruct is an auto-regressive language model that uses an optimized transformer architecture. Post-training includes continuous pretraining and supervised finetuning.
For more details about how the model was trained, check out [our blogpost](https://blog.traversaal.ai/announcing-alif-1-0-our-first-urdu-llm-outperforming-other-open-source-llms/).
### Evaluation
We evaluated Alif 1.0 8B Instruct against Gemma 2 9B, Llama 3.1 8B, Mistral Nemo 12B, Qwen 2.5 7B and Cohere Aya Expanse 8B using the human annotated Urdu evaluation dataset and scores are determined using gpt-4o as a judge.
<img src="result1.jpg" width="650" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
<img src="result2.jpg" width="650" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
### Model Card Contact
For errors or additional questions about details in this model card, contact: [email protected]
|